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Spectral properties of fluctuating electromagnetic fields in a plane cavity:
Implication for nanoscale physics
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Spectral power densities of fluctuating electromagnetic fields and their spatial derivatives of all orders in any
point of a transparent plane gap between two media described by different complex permittivities and by
different temperatures were derived on a basis of generalized Kirchhoff’s law. Electromagnetic losses into the
two absorbing media induced by a field of a point dipole or of point multipolelike origins situated in any place
of interest at the transparent gap were determined. The corresponding electrodynamical regular Green problem
for a point dipole and for point multipoles of any orders constituted by the point dipole was solved. We
demonstrate ways to obtain different asymptotic cases following from our general solution including the
problem for a half space, Planck’s formula for black body radiation, the van der Waals forces for solids kept at
different temperatures, and contributions from propagating and evanescent waves. Expressions for electromag-
netic loss of a point multipole of any order in selected geometry of the problem were derived and, as an
important limiting case related to problems of near field microscopy, when the multipole is situated over a half
space.
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I. INTRODUCTION Besides conservative forces lik@), a moving system
may be subjected to dissipative forces. In a free space, fric-
A variety of important phenomena exists in physics oftion may occur via interaction with the black body radiative
systems with a confined geometry of space. For instance, tHield or with a zero-point fluctuating field. Properties of fluc-
Casimir effec{1], cavity induced processg, 3], evanescent tuating electromagnetic fields in this case are known quite
waves in nanoscale physi¢é], and thermal and quantum well, but in real_|ty, a part|cle_ is moving near a wall or in
electromagnetic fluctuations,6]. In practically all of the —channels of various geometrical forms, in other words, in a
above mentioned phenomena a spectral composition of elefouUnded space. In this case the dissipative and conservative
tromagnetic fieldsEEMF) plays a major role. In order to Interactions are occurring via both radiative and evanescent

solve some related problems, we have to find spectral pow g:ﬂise;vz;)?ﬁepr?g&retﬁsair(je geggn;t':]oerg;)yngﬁgmre;”g?tlig;g?'
densities(SPD of electromagnetic fields and their spacial P y 9 brop

derivatives in a cavitv of various geometrv or in a bounded? matter-constituted space. For example, the dissipative in-
space y 9 y eraction of a mobile particle with a half space was consid-

. . _ __ered in a relativistic approach on the basis of fluctuating
The knowledge of spatial derivatives permits us to f'ndelectrodynamics by Dorofeyest al. [7]. In order to study

any forces acting on multipole systems in a cavity or near &jmjjar problems with other geometrical conditions we need
surface. A potential energy of a system in a fi@lccharac-  to investigate properties of fluctuating fields in geometries of
terized by a potentialp of another system may be repre- interest.

sented as a series, Other intriguing problems in science are connected with
the influence of surrounding matter, including geometrical
conditions(“background”), on the probability of a quantum
transition from state-1 to state 2. We may consider this
background, for instance, as a stochastic action of other sys-
where e is the chargep the dipole moment, andj;, the tems, of random force fields of any nature, and other fluctu-

quadrupole moment of a system of interest, etc. If we knowating action. The influence of such stochastic action and in-
the multipole polarizabilities of a system we may calculate deraction of the quantum system with surrounding systems

force acting on the uncharged system in a stochastic field: May be described by the fluctuating part of Hamiltonian
U(t,z) as a random function of time and a regular ran-

dom!) function of geometrical properties, which is described
(2 by the parametez. It may be, for example, a value of a gap
between two slabs, etc. In this case the complete Hamil-

. . tonian of a quantum system plus fluctuating background has
The correlation functiongEEy), (EjJE;/dx) and others ¢ q 4 P g g

may depend on geometrical parameters of a bounded space.

U=e¢— piEi+qika_Xk

4. (1)

14 JE;
—— ! _ .M (q) It DIP
fi==% ai <EiEk>+aiIEj<Ej axk>+

H=Hy+U(t,2), 3

*Permanent address: Institute for Physics of Microstructureyvhereﬂo is the Hamiltonian of an isolated quantum system
RAS, 603600 Nyzhny Novgorod, GSP-105, Russia. or a quantum system in a free space.
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Using the well-known formula froni8] for a probability  half space induced by a radiating system which may be rep-
amplitudeC,._, of a transition during the timet{-ty,), we  resented by infinite multipole series.
obtain the probability of a quantum transition averaged out

over an ensemble of realization 01; inte_rac-tion with Fhe sto- Il. PROBLEM STATEMENT

chastic “backgroundP,._;=|C,. ;|* which is proportional _ _ _

to the value(U,;(t")U,(t")), whereU,(t) is the matrix Here we use the reciprocity theorem to find components
element of the (2-1) transition. of a fluctuating field and its spatial derivatives with the help

In the case of a weak electromagnetic field in the dipoleof a point dipolelike or multipolelike origin. At first we con-
approachU = — |5|§ induced transitions in a stochastic field Sider two antiparallel point origins situated near each other at
are proportional to a correlation tensor of the field(he Spatial points andr+AS. For example, electric com-
(E{(t')EL(t")). The velocity of a transitionW=P(t)/(t ponents qf a _fluctuatlng f|e.Id along the point dipoles are con-
—t,) in steady state stochastic fields is proportional to a Sprected with fields of the dipoles by the formulas
at the frequency of the transition

Ea(r):f (&4 Je— Ha-Jm)dF, (6)
Wy =27h" 22, pipk Gil w2, @)

whereG;,(w) is the Fourier transform of the correlation ten- ~Eu(f+AS)= j (EqrJe= Har-Jm)dT, (@)

sor G (t' —t")=(E;(t")Ex(t")) and the asterisk denotes a

complex conjugationGi,(w,z) may function on a geometri- where&, , Hy and &y , Hy: are the fields of the two antipar-

caIAparf;]metelz (t)f(? problelm.. ted with th bl llel dipoles,p= —p’, andj, andj,, are the densities of the
nother related exampie IS connected wi € problem Ok, tarnal electric and magnetic currents that are creating the

energy Igvel shifts of a quantum system under the action of ﬂuctuating fields may bex, y, or z. Summing up these two

stochastic EMF. In accordance with second order pert“rbaéquations and considering’tr;e limit§|—0 we have a de-

tion theory, the shift ofth level equals rivative of the componeri, of a fluctuating field along the
directions

o= 3 PPl e, ®
m n m J

E e .o
a=f (& Je=HI - JmdT, tS)
where the prime means#n. Is

A lot of important problems in nanophysics are connected
with processes originating from near field interaction of bod-Where
ies. For instance, in scanning probe microscopy it is often
necessary to understand reversible or irreversible changing at
the surface under various kinds of action from the side of a
probe. In the case of a near field optical microscope, it may

be photoexitation and heating followed by physig:al-chemicakhe strengths of a field of quadrupolelike point origin.
tphhenomena alt the sutrfa'C(te. One pr(?blerrr]l hetrr:a IS té). Ct?"cu'a € Thus, different point quadrupoles determine different first
€ energy release rate into a sampleé when Ihe radiating Sygy, »iiq) derivatives. For example, a quadrupole of electric ori-

tem may be _represented asa m“'“p_o'e system. Results of 06 n determines spatial derivatives of the electric field
paper may find useful applications in this area.
The goal of this paper is to calculate spectral power den-

. . o : . JEy JE JE,
sities of fluctuating electromagnetic fields and their spatial B = Oy — Upy— —. (9)
derivatives in a plane gap consisting of two half spaces with 9z 9z 9z
different complex permittivity and kept at different tempera- ) _ _
tures. We based our calculation on the generalized Kirchand, correspondingly, a magnetic quadrupole determines spa-
hoff's law [5,6]. In accordance with this law we solve the tial derivatives of the magnetic field. In the same way, it is
corresponding Green problem and related problems for mulPossible to find derivations of any order
tipolelike origins for selected geometry of our problem. Lim-
iting cases of our general solution we consider various J"E, _j £9.7 99,7 ydr 10
asymptotic results. In particular, we consider the following. der " 0Sy (En-Je=Hn Jm)dT, (10
() We consider two cases for propagating and evanescent
waves expressing the solution via ordinary surface Fresnelhere
coefficients.(b) We demonstrate a transition to the case for a

ﬂd'f"]:zdr
|as|

N EgtEqr
9= <
&E1= lim Ag]

|A§|—0

and Hi= lim
|A8/—0

half space and compare with the known solution for SPD of ga g
components of a fluctuating EMF in this cage. We show §a= fim "2
how to obtain a general expression for the van der Waals |AS,|—0 |AS,|

force for the general case of different temperatures of inter-
acted bodies(d) We find a rate of energy liberation into a and
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Z binations from the components of the fluctuation field. Next,
after averaging over the equilibrium_ensembles of_random
e currents, we apply the electrodynamic FDT to obtain mean
square characteristics of the fluctuating field, expressed via
- the thermal losses of regular fields in either medium, induced
£ P by point dipole placed in the gap at some distahéem the
h lower medium and oriented in an appropriate fashion. As a

, resul_t, multiplying the Io;se@l in the first medium by® 4,
L M1, A and in the second mediunQ) by ®,, we have, for ex-
ample, forz components of a fluctuating EMF, another form

FIG. 1. Representation of two absorbing homogeneous isotropiof the generalized Kirchhoff's law
media.

- - 2
A= lim Hﬁ|2+§7|fﬁ1 | ([Ei(MI?) = —{©1Qu(pf 1) +©,Qa(pf 1},
|AS,|—0 n

the strengths of a field of the multipolelike point origin. 2 _— _—
In this way we are creating special kinds of multipoles (Hi(M[%=—{01Qu(p";1) +0:Q(p1", 1)}, (12)
with the help of a point dipole located in the selected direc-
tions. In order to find the component of a fluctuating field or
any spatial derivative we need to solve a corresponding propvhere notationg; and p" indicate the requirement to find
lem for a pointlike dipole or multipole origin. the losses of regular fields induced by electric and magnetic
Multiplication of any component or derivativéd(,) from  point dipoles, respectively=X,y,z. It directly follows from
(6,1@ to a Comp|ex Conjugate(BG) from (6'1@ followed the .above.diS-CUSSionS that the relateq eXpreS-SionS for any

dissipation theorenfFDT) [5,6] gives the generalized Kirch- Posed of a point dipole can be obtained.
hoff's law, Further, we separate the electromagnetic losses from the

even and odd multipoles, for convenience. We introduce the
following notations for even derivatives of field components:

2
<Aa(w,F1)BZ(w:F2)>:;(wyT)QAB*(Fl,Fz)y (1)
I"E,
az™ (Frw)

2
< >E<|E(zm)(F,w)|2>E<IE§m)I2>,
whereQ g+ is the mixed electromagnetic loss of unit mul-
tipoles located in the spatial poinfs andf,, correspond- (13
ingly, O(w,T)=(Aw/2)coth@w/2kgT), kg is the Boltzmann m
constant, and the brackets represent averaging over an en- < 9 Ex,y(r ®)
semble. Thus, in order to obtaiiE,|%), (E,JEX/dB) or gz™
{|9E,19B|?), we need to calculate, correspondingly, the
electromagnetic losses of a unit dipole, mixed losses of a U”U\/herem=2k, k=01, ....
dipole—quadrupole system, and the losses of unit quadrupole A very important casemn=0, corresponds to components
as situated at the points of interest. The same statement ofg; EMF, namely,
viously concerns any derivatives and multipoles.
We will seek the SPD of fields between two absorbing

2
>E<|E;?;><r,w>|2>z<|e<x?;>|2>,

homogeneous isotropic media with different temperatures <|E(Z°>|2>E<|EZ|2>, <|E§(°;|2>E<|EX y|2>_ (14)
(Fig. 1). The half space=0 is filled with a material char- ' '

acterized by complex constards, u;, the half space=| is For odd derivatives we have the same notations, but with
filled with a medium with the constants,,u,, while the  another lettem=2k+1,k=0,1, . .. . Formixed derivatives

gap between them is a vacuum or filled with a nonabsorbingve have, for example, for thecomponent of a field,
medium with the real dielectric constargsu. We assume

that two subsystems of extraneous random sources of fluctu-

ating fields are located in two thermostats with temperatures | ¢™E JI"E3

zZ, z N > -
T, andT, maintained constant. The system consists of equi- | 5ym (7+@) —-a (F,®) =(E{"(F.0)E"* (F.0))
librium subsystems, justifying the application of FDT. The
relaxation time of the overall system is possibly to be con- E<E(m)E(n)~k> (15)
sidered much larger than the relaxation times of two sub- 2o
systems.

In our case using the reciprocity theorem and the principle For components of a magnetic field we have similar no-
of superposition of fields, we make the required square comtations. Everywhere in the paper we will use notations for a
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fluctuating field asE,H differing from the notations for a - 03 _dd8(F)
s . . . AZI+KeZi=4mup , (20)
regular field€,H, which are generated by pointlike multipole S,
origins.
Then, for convenience we introduce mixed losses for evemvhere
and odd multipole origins and seek any losses as an integral
on the pointing vector all along, for example, surface0
by an integration in a cylindrical coordinates system . Zg+Zg
|AS;|—0 |AS,]
e,o c ” 27 I o ex /0%
mn= " 167 )4 rdr fo de{[(En+E) X (Hy +H™)1, By a similar means it is possible to obtain the equation for
any multipole origin,
+c.Cdm0, (16)
AZI+K?Z9=—(—-1)"4 5 200 (22)
where &%, and Hy§, and the fields are created by even or n n T pasl---asn'
odd multipole pointlike origins ofm or n orders(c.c. means
complex conjugation So, from(16) we have any electro- where
magnetic losses originating from pointlike multipoles
) . . Sal Z3,+73,
B = Qe+ QR o+ QE% + QoY (17) i I Al
n —
whereQS%, are the losses of even-order multipolesQ¢, © As usual, we will seek a general solution to Egl) as a

and Qreﬁon* the mixed even-odd multipole lossesmfandn ~ sum of a partial solution of21) and a general solution of
orders correspondingly, ar@ﬁﬁ* the n-order odd multipole the corresponding homogeneous equation. In order to find

losses. Obviously, similar to formuld6) but with an oppo- @ partial solution we use the Green functiody

site sign is valid for loss calculations in a second half space= #P exp(-ik|r)/|r] of the problem(18). Using properties of
generalized functions it is possible to find a corresponding

solution of the probleni21):
11l. SOLUTION TO THE PROBLEM

A. Multipole representations N =
P P exp(— k|F=7"|) I"8(F")

[F—r"| asy- -+ dsy,

As a first step we determine the Helmholtz equation for Zﬁ=(—1)nﬂﬁf )
multipoles composed of point dipoles situated in directions v
of interest. As shown in Appendix A from the Maxwell sys-
tem of equations and selected relationships of the Hertz vec-
tor with scalar and vector potentials, it follows the Helmholtz
equation for a dipole origin is

" exp(—k|f])
1 dSy |F|

=(~1)"upg (22

Finally, as follows from(22), in order to find a partial
solution for any multipole we should take the corresponding

> 25 _ Vi a . . . .
AZy+k°Zg=—4mups(r), (18) derivatives with respect to the Green’s function for free
space.
where pS&(r) is the unit pointlike dipole origin of a field
which is determined by the Hertz vectdy. This is the B. Integral representation of multipole origins

ordinary Green problem. For another point dipgié, at a
distancer+AS§; from the first one, we have another equa-
tion:

To solve the problen{21) we need to find an integral
representation of the corresponding partial solution. For a
dipole we have the well-known Sommerfeld representation
[14],

AZ g +K2Z 3 =—4mup S(F+AS,). 19
d d mp’S( 1) (19 expi—kR) [~ exp( —qlz—hl)
—:J Jo(Ar) ——————\
0

R dn, (23

After summing up(18) with (19 and decomposings(f

+AS,)=46(F)+AS-grad 8(f) we have an equation for a
quadrupole composed of two antiparallel pointlike dipgles where J, is the Bessel function of the zero ordeu,
and p’=—p and separated by a distant®s;| along the =\A?—k? R=\X?+y%+(z—h)?, andr=\X’+y? in ac-

direction§;, cordance with Fig. 1.
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Since we have homogeneous conditions alongkthyedirections(see Fig. 1, we seek onlyz derivatives. For a quadrupole

using the Sommerfeld representati@38) we have

i(exp(—LkR))_ &{

0z R 0z

0

0

0

Using the function sgn§=1 (x>0), sgnk)=0, (x=0),

- fw‘]o()\r)exp[—q(z—h)]x dx

J'OOJO()\r)exp{—q(h—z)])\ dx

waO()\r)q‘lexq—q|z— h[)\ dx

(z>h)

(24)
(z<h).

power densities of a field and spatial derivatives, as estab-

sgnk)=—1 (x<0), and known relations for generalized lished by the generalized Kirchhoff’s la(t2).

functions[ sgnk) |M=28(x) andf(x) 5(x) = f(0)8(x) we can

write the result in the compact form

J" exp(—kR) H njw 13
T Rr Lsonh—2)] . o(AT)
xexp(—q|z—h[)\ d\
N
+2, [sgrth—2)]"~ 2%
i=o
xf g2 Jo(Nr)NdN, n=0,1,...,
0
(25)
whereN=(n—2)/2 for n=2k andN=(n—3)/2 for n=2k
+1,k=0,1,2 ... . At negativeN the sum in(25) is zero.

For even derivatives af components of an electric field

20 = N3 d\ 20 = \3d\
<|E<Zm>|z>:_1Ref e ZRef BE
0

Twe Twe o tg*

(27)

where

2
coshigl—qgh)+ ?sink{ql—qh)
1 ay

! D2

An=qm?

,3 2
costigh)+ —sinh(gh)

ay

m 2
Bﬁ”l |q |2~
2 |D|2

Thus, we obtain the integral representation of the partial

solution for a multipole origin of any ordem=0,1, ... ,

namely,Z%=(—1)"upz3, where

23~ Tsorth-2)1" 4" 350 )exp(—alz—hi)x dx

N
+> [ng(h_z)](n_a_l)f CENONSIN d)\J,
<o 0

(26)

where the cas@=0 corresponds to the classical Sommer-

feld integral representation for a dipole origin.

C. Spectral characteristics of a fluctuating field

m=2k, k=0,1,....(29

For odd derivatives o components of an electric field

we have the similar formulé27), but with odd coefficients

,8 2
sinh(gl—qgh)+ ~—Zcoshql—qh)

AZ=| 2Lt — ,
@ IDJ?
2
sinh(gh) + @coshqh)
2 ay
Ba=|a">—= - ,
@2 IDJ?

n=2k+1, k=0,1,.... (29

As follows from (11) and (12), in order to obtain some
spectral characteristic, we ought to determine the electroFor the even derivatives of, y components of an electric
magnetic loss of a point multipole into both half spaces. Foffield we found
this purposdsee Appendix Bwe found the electromagnetic
field of a multipole as situated in any point of the transparent |, _ )2, _ 0, “NdN 0Oy =NdN
gap. Then, in accordance with6) we had to seek the losses <|Ex,y| )= ﬂRe o q Cmt moeRe 0 q D,
(see Appendix € (30)

Using calculated losses from Appendix C with the corre-
sponding coefficients from Appendix B we find the spectralwhere
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IV. DISCUSSION

e _
Cm= ;M a; " A. Spectral power densities for propagating
and evanescent waves in a plane cavity
and Naturally, we must obtain any classical consequences
B from our general solution. We demonstrate corresponding re-
Dem=q2& f , (32) sults in a very important case for SPD components of fluc-
@ ) tuating EMP. It directly follows from(27) and (28) for the

casem=0. For convenience we introduce the distadcel

with coefficients(D1).
For the odd derivatives of the, y components we have
expression(30), but with odd terms

—h between a second half space and a point of interest in the
gap. After some obvious transformations obtained by elimi-
nating terms exg(l—qh) and exp{h) from the numerators of
A, Br, simultaneously with the term exglj from denomi-

C‘;:qz%tg ﬁco nators ofA,, By, we have for the component of a field
1
2
o _ 101 \/Efx _ N L
and (ES=—2 VT |, = (@+an)hl iz Sidi \dh
B2~ ,32
o_2P2=0 272 o L@
On=ag, Pn Kz b 32 2\[f exd —(q+qg*)d]

and corresponding coefficient®2). For mixed odd-even
derivatives 0* e) of the z components of a field we have

20 < N3 d\ .
L Ref P pore

TWE g* s M

20, A3da 32
Re j Mk
0

Lq* mn »

(EmE™) -

+

TWE

with expressiongD3).

For mixed even-odd derivative®f{0) of the z compo-
nents we have the same formy&8), but with complex con-
jugated coefficient@\e °=(A ne)* and Be °=(B ne)*.

For mixed odd- even derivative®{e) of the x,y compo-

2\
BO e (33) <|EX y| > 2770

A2
k2 SZE 2e A d)\1

and for thex, y components

(36)

lal*
eXF{ (9+a")h]) 7z Siel 1.
+S,15 ]xdmﬁ\[f exi —(q

|a?

*)d]( v Sodlact S5 2u

])\ dn, (37

nents of a field we have where
<E(m E(n)* j A dA Comne s :k(Qi*/Ei*_Qi/fi) :k(Qi*//—Li*_Qi/Mi)
< elaletail/el mplal o il®
C) <\ d\ .
+ 22 pe j D (34 (=12, (39
TWE o g
and
where
g y = 1+rexd —2q(I—h)]|?
1 1~ le™ — (PP _ '
C(r)nne kz_lcomne a_lcomne 1-rir5exp(—2ql)
1+rPexd —2q(l—d)]|?
and 5 | Eriexd—2q0 - ® a9
1-rir5exp—2ql)
* ﬁ ~ % B
D%ne=q2a—2D?nne— —ZD%ne, (35) - 1+r3exd —2q(1—h)]|?
2 *_
ol 1—rSrsexp—2ql) |
and coefficient§D4).
We obtain corresponding formulas for mixed even-odd . |1=xriexd —2q(l—d)] 2
derivatives e* 0) of x,y components of a field froni34), 15,= , (40)

repIacingCe °and De ° with the coefficients complex con-
jugated to(D4) where
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(1- B %) =0 and|qg|?=k?®—\?. In this case the spectral density of
r ‘p:(lﬂa—-/a-) energyU , is not dependent on a distamor d in the gap and
v from (43) we have

B (el\/wze,ulcz—)\z— e\/wzei,u,i /c?—\?)

= (i=1,2, 10 /e o ®
(€, w’emlc?>— N>+ e\w?e ui[c?—\?) Ung fo (Siet+ SN dN+ JO (Spe+ Sy )N N |
(41) (44)
(1- B la) As in [5], we introduce the relative indexes of refraction
r s_\T Pl Ni=+eU;/en, i=1,2, and the variablex=A/k=sin¥,
I
(1+Bila)) where ¢ is the angle of incidence of a propagating wave on

absorbing matters. With these notations we rew(&8) in

2 2_\2_ 2¢ 1 /C2— N2
_ (mivo’eulc? =N — pweui Ic?—\?) (=12  theform

(piNow?eml =N+ uow?e u;1c?—\?)

(42) < «(1-R) Y s W1-Rl) 12
.E: _—_— an = — — ] = , ,
21— 1o
are the ordinary surface reflection Fresnel coefficientgpfor (45)

ands polarized waves, respectively.

Obviously, the termsy, .15, andlj, 15, describe inter- where
ference processes in the plane gap, similar to corresponding
formulas of the Fabry-Perot system. Rearrandgip@ndsS,, , Rl =|rP]2=
11,15, andlg, I3, in (36) and(37) gives an expression for e
the SPD of magnetic component$,|?) and(|Hy y|?).

After that it is easy to obtain a formula for the spectral
density of energy of the electrid).,=e(|E|?)/4m, and
magnetic,U ,, = u(|H|?)/4m, parts of fluctuating EMF and
the total spectral density of enerdy,=Ug,+ U, over
positive frequencies RL:|riS|2:

a1—x2—NZ=x2|?
ai1—x2+ N7 —x?

&; cosf—\N?—sir? ¢
@ cosf+ N> —sir? 6

ai\J1—x2—N?—x2
ai 1= X2+ N7 —x2

. w 2= 4\21F
Ufﬁ—L;JZ_M exr[—(q+q*)h][(—2—|Q| lli( e _ | @i cosf— NP —sir? ¢ ’ 49
° a; c0s0+ N> —sir? 6|
lg?1,+ 217 . :
+15, Sle+<%+lfﬂ)slﬂ})\d)\ where R| and R} are the energetic reflection coefficients
from absorbing half spaces at the anglor waves with the
Lz\/a P [q|215.+ N2l 5, electric vector in parallel and, correspondingly, perpendicular
+ Twcrjo eXF[—(Q+Q*)d]{ (—kz— with respect to the plane of incidence and1,2, as usual.
Because both polarizations of waves of stochastic EMF are
. |q|2|2‘ﬂ+ 22| 2+” N absolutely equivalent, the total reflection coefficients are
+15. SZG+<—k2—+I2M) SZM})\ dn. (43 equal,Ri=(R|+R|)/2. As a result we have for propagating
waves
As was shown by different authors, the quantity Oeuk?| 1 x dx
= \?—k? determines propagating and evanescent waves. T o 20 fo(l_Rl)ﬁ
Further, we study the simplest asymptdtie « that can be
found analytically. Of course, the general case for any value 1 x dx
of the gap requires numerical solutions. +f (1-Ry) —] (47)
Large | physically means thalt is much larger than all 0 V1-x°

wavelengths determining a fluctuating EMF of a body. Then
we may neglect all interference processes andlput |5,
=1;,=1,,=1in (39 and(40) and in all corresponding for-

For the black body case we should ®it=0, (i=1, 2) by
definition. Finally, we have the well-known formula

mulas(36), (37), and(43). In this approximation we consider OK2
two essentially different waves. Uw=7—0 n3=U,,n3, (48)
T°C

1. Propagating waves and black body radiation wheren=eu is the index of refraction of the transparent

We consider an equilibrium cag®,=0,=0 in the limit  media in the gap, and the spectral density of energy of black
| —co. For propagating waves we hawe<k, whenqg+qg* body radiation in a vacuum is
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y _ heo® 1+ 1
00 72c312 " explhwlkgT)— 1)

(49

2. Evanescent waves and related asymptotics

These waves are defined by the relatiorrk, whenq
—g*=0 and|g|?=\2—k2. With the same approximation
|-~ after introducing of the variablesy=q/k
=\?%/k?>~1, we obtain from(43) the spectral density of
energy for evanescent waves:

eu_lkg 3 [~ 2
0 =22 |, SH T 2KNYI(SFSy,)(y "+ Dy dy
0,k2

B Jo‘exp[—Zk dyl(Spe+ S, (y2+ 1)y dy.

(50

For®;=0,=0 using an estimation of th§ . where§; ,

as was done if5,6] or in [8] for the case where relative

PHYSICAL REVIEW & 026610

After that it is easy to obtain an expression for spectral
density of energy of the electric part of fluctuating EMF.
Rearranginga and « gives an expression for the spectral
density of energy of the magnetic part. A total sum deter-
mines a spectral density of energy of the fluctuating electro-
magnetic field at any point over a half space and may be
reduced to the form previously obtained by authors of the
theory of thermal fluctuating fields,6]

1O eu [+ . |q|2+22
Uw—mfo exd —(g+g*)h]n d)\( K2 +1

Equation(54) obviously follows any known asymptotic
for propagating and evanescent fields, which may be found
from the above mentioned references.

C. An application to the theory of van der Waals forces

The van der Waals force between two half spaces may be

refraction indexes of the half spaces are not very large, wéound as thez component of the Maxwell stress tensor

found with an exactness up to the terms of ordek )¢ and
1/(kd)?

(aj11+a| %+ oyl |1+ aq)?)

ev 3
Ho =Yool k(=)
(A5 | 14 @) 2+ ayl |1+ a,|?) 51
KA+ P &1

It should be emphasized théil) is valid for large gap

Fo=To=€e(|Ed*)—([E?) —(|EyP)/Am+ n(([H?)
_<|Hx|2>_<|Hy|2>)/47T- (59

For different temperatures and identical materials the cor-
responding solution was found j8]. Here we show that the
relevant solution for different materials differs only by obvi-
ous madification. Using27) and(30) for the casen=0 we
may write down various forms of55) and find the stress
tensor at any appropriate surface in the transparent gap. For

values. To study an evanescent field structure in the arbitrarggxamme at the surfade=0 we have

value ofl we have to use the general formy#s).

B. Spectral power densities of fluctuating EMF
for a half space

Another important related problem is the case of a half

space wheth=«, a;=a,, a;=a,, andT;=T,. In such a

case we will consider any characteristics at a finite distance

* *
o"e e’ o
an ’ Dmn ’

DE,O

h. It is clear that the coefficien8;5,, Df,.,

27w 0 L

- 0 »ghdN [ & 5
- Ref q ( 22+ ~2 )
IDI* D)

0 =ghdN [ S 5
+ 2 Rej d Ly 1 (56)
27%w 0 |D|? |D|?

Bﬁ:ne are equal to zero and we have SPD of a quctuatingOr

EMF and its derivatives at the distanbeover a half space
described by complex permittivities; and ;. We demon-

strate the result in the familiar form of SPD for components
of fluctuating EMF over a half space. It follows directly from

(27), (30), or (43) for the casem=0. After some obvious
transformations we have

20 =»\3d\ By exd — (q+q*)h]
2\ ——
(IE%= ﬂ'weRef ¥ Ty |1+ Bia)?
(52
. =NdN |, B1exd—(q+g*)h]
2i\ _ 2=
([Bayli= WweRefo q (q |14+ B1/a)?
B1 exd —(q+g*)h]
_ k2~
o Tt Balarl? 3

0,+0 =ghdh [ A A
Lo ZJRef q (_+_>
0 L D

¢ 4720 D
0,—0 2ghd\ [ 8,— 8, 8,—90
+[ 2 1]ReJ' q 1= %2 017 %
4720 0 IDI? |’|3|2
(57)
where
_[B1 Ba2) . B1B2
A= a—1+a—2 sinh(gh)+| 1+ " )cosf(ql),
~ (B2 B2\ . B1B2
A= a—l+a—2 S|nr(ql)+(1+ala2)003f(g|),
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_ﬁz( q |B4? ~ _qbz( a |B1 2)
61—_ _*_ i 51_,..,_ _*_ ~ y
az\q a; az \( a;
2 2
52=ﬁ(—*—@ ) 5= Bl(—*— P27 (59
a1\ q a; ai\q @,

From (56) using (B6), it is not difficult to prove that

=ghdN[A A =ghdN[ & B
e a —+ = =—Ref d S
0 ¢ D D 0 ¢ |D|? |D|?

5, &
+—22+~—2). (59
IDI* D2

We represent59) in the forma+b=1, where

=ghdN | S 5 AdA
—Ref a s 4
o « \[DJ? |D|2
A A
x| =+ =,
D D
b focq)\d)\ 52 q)\d)\
o ¢« \ppP" |D|2
A A
X —+ . (60)
D D
Substituting(60) for (57) gives
a®,+bo =ghdN[A A
Fw——MRe a —+—|. (6D
272w D

As follows from a comparison of61) and (57) for iden-
tical materials, whens,;=6,, 8;,=9, or for the case®,

=0,, we havea=b=1/2. We prove now that the same

values ofa andb are valid for a general case.

Let us assume for different materials that the constants

and b differ from 1/2, for examplea=1/2+a; andb=1/2
+b,. Substitution of these values {61) gives

E_ [®1+®2] q)\d)\ A A
¢ 4720 D D
a;0,+b,0 ANdAN[A A
_[ 191 _ 2 2] ~q ( ) 62)
27w D

After comparison 0f62) with (57) with the help of(59) we
have the equation

PHYSICAL REVIEW &5 026610

[a,0,+b,0,] fmq)\d)\ 51+52+”51+?52
27%w 0 ¢ |D|? |D|?
:[ 1] J' q)\d)\ 52+31_~52

42w |D|2 D2 .

(63

Term-by-term equalizing if63) gives the system of equa-
tions

0,-0,=2(a;0,+b,0,),

(64)
@1—®2=2(a1®1+ b2®2).

If ®,# 0, the systeni64) will have a solution only when
a;=b,=0. It means thahi=b=1/2 for any case and we
have for different materials and temperatures the expression
(61) for a spectral density of force. Finally, an integration
over positive frequencietsee, for instance,10,11]) yields
the formula obtained for the cas®;, =0, and nonmagnetic
solids by Lifshitz. But for different temperatures we have

_ kgTy SintP|[Sont P
F_ZWCBE j [ (Sln P/\Sn—P exqugnl/C)
Sint €1 p)<32n 2np)
-1 exp2pé,l/c
Sin— €1nP/ \ Son— €2nP A2péilic)
N Simt P
_1} dp+—gl; fp mi( m_p
-1
omT P S1m+51mp>
X exp(2pémyl/c +||—
( Som— p) A2pénl/c) = Sim™ €1mP
Som+ -1
x( Zm—ez”‘p) exp(2pé,lic)— 1 ]dp, (65)
Som™ €2mP

wheree,=€(i &), en=€(i&,,) are the values of the dielec-
tric constants on the imaginary axis,= ve,— 1+ p?, Sim

=\e;n—1+p?, i=1,2. The prime in the sum indicates that
all terms withn=0 and m=0 have to be taken at half
weight.

The formula(65) can be used to find the force for any
distance, materials, and temperatures and T,. Some
asymptotic cases may be found[B+11]. Using the solution
for the plane-parallel case it is possible to obtain a related
solution for solids terminated by nonplane surfaces as de-
rived, for example, by conformal mapping5].

D. Radiating multipole system over a half space:
Energy rate liberation

In order to demonstrate an application of the obtained
results concerning calculations of spatial derivatives, here we
find out the energy rate liberation into a half space under the
action of the origin of a harmonic electromagnetic field. We
consider the case where the origin may be represented by a
series of multipoles. It is clear that such a situation is rel-
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evant for scanning near-field optical microscoNOM). wej(w) [|Q3Pr(3) |Q3PI(7) |Q3’I(12)
We will obtain the result for a partial case of axial multipoles Q%= 17 e( )|2{ 5303 STh7 ST T
consisting of the dipole witlz orientation and located in a €1l@

vacuum ,u=1) at the distancé over a half space. Taking

into account our remarks at the end of Appendix C and for- +} (72)

mulas (27), (28), and (C1) for even and corresponding for-

mulas for odd multipoles in the case for a half spate ( The corresponding expression for odd multipoles is
=), it is easy to obtain the value of energy release rate for

even multipoles: . @€(w) [|QIFT(5) |Q3PT(9) |Qg*T(13
LC|QZ |2 B Q = |1+ 61((1))|2 25h5 29h9 213h13
e __ m 3 _ * m|2
Q=25 | Nodhexi—(a+ o hllaPs., )

where Q% the multipole of the m order, m=2k, k
=0,1, ... and for oddnultipoles

o we| Q% (= 3 * n|2
QHZT 0}\ d)\exr[_(q_'—q )h]|q | SE’ (67)

where Q% the multipole of then order, n=2k+1, k
=0,1,... . It isshould be clear tha@j=p, is the dipole
moment, Q7 the quadrupole momeng)3 the octupole mo-
ment, and so on.

We consider the near-field regime and a contribution only

from evanescent waveg;- q* = 2q, whereq is the pure real
number. By introducing the new variablg=q/k,, kg
= w/c we have, say, froni66)

e fo

3 | exa—2kny e
2 0

+y2™* 1S, dy, (68)

and a similar expression frof7).
To take the integral i68) we simplify S, as was done in

The combination of71) and (72) gives us the general for-
mula for the rate of energy liberation into the dielectric half
space under the action of a harmonic electromagnetic field of
the axial multipole system:

wej(w) <« T(2k+3)

- |1+ 61((1))|2 IZO 22k+3h2k+3 | Q

W (@3
By the same method of integration we obtain the formula
for the case of good conductors:

I'(2k+2)
22k+2h2k+2|Q

Zgl o
=21y

C k=0

W2 (74)
where {;=\w/8ma,, the real part of an impedance of the
half space.

Obviously, it is possible to do the same calculations for
multipoles composed of the, andp, dipoles and find com-
plete multipole series. This will be done in our forthcoming
publications.

V. CONCLUSION

[7]. Namely, we consider two dramatically different cases,

for good conductorge;(w)|>1 and for dielectricse;(w)
=1, wheree;(w) = €;(w) + t€](w). For conductors and di-
electrics we have, respectively,

S 1 | o 4 s 2€](w)
T yIN 270,y and > yl1+ e (w)]*’

(69

In this paper we have studied spectral properties of ther-
mal fluctuating electromagnetic fields in a transparent plane
layer between two absorbing half spaces. The materials of
the half spaces are characterized by different complex elec-
tric and magnetic permeabilities. We assumed that two inde-
pendent systems of external random sources of thermal fluc-
tuating fields are distributed into the half spaces as
thermostats with, in general, different constant temperatures.

where o, represents the conductivity of a half space mate-gpectral power densities of fluctuating electromagnetic fields

rial.

Substituting(69) for (68) and using the handbook of in-

tegrals gives us the terms of orderk(® ~?™* %) for dielec-
trics

| Q2|2 (2m+ 3)
22m+3hm+3 1

e wej(w)
"1+ ey(0)

(70

wherel is the gamma functioom=2k, k=0,1, ... .

and the spatial derivatives of all orders in any point of a
transparent plane gap between two media were found with
the help of the generalized Kirchhoff’s law. In accordance
with this law we calculated electromagnetic losses into the
two absorbing media induced by a field of a point dipolelike
or point multipolelike origins as situated in a point of interest
at the transparent gap. The corresponding electrodynamical
regular Green problem for a point dipole and the related
problem for multipoles of any orders composed of the point

We have the same expression for odd multipoles, but irdipole in the directions of interest was solved. In order to

(700 n=2k+1,k=0,1, ... should be substituted.

solve this problem we found an integral representation of an

Finally, we may write an energy release rate for eveninhomogeneous part of a solution for point multipoles using

multipoles summing up all expressions liK&0):

the well-known Sommerfeld integral representation of re-
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lated solution for a point dipole. We have shown variousin the case of a dipole origin, to find the Cartesian compo-
forms of obtained solutions for spectral power densities innents of the Hertz vector in the gap and in the absorbing
cluding ordinary surface reflection Fresnel coefficientssfor materials we need to solve the equations

andp polarized waves. It was demonstrated from our general . .

solution that it is simple to obtain the known asymptotic AZ+K?Z=—47ups(i)

cases. For instance, it is possible to obtain the spectral power
densities of all components of fluctuating electromagnetic"‘nd
fields at any spatial point in a plane gap or over a half space.
Using these formulas we obtained the spectral densities of
energy for both propagating and e\_/ar_lesce_nt waves. Thv?/here S(r) is the delta functionf the observation point,
Planck formula for the black body radiation directly follows andi=12. Obviously. for the maanetic Hertz vector we
from the formula for propagating waves. On the basis of the = Le Y. mag A N
solutions obtained we found a general expression for the vaﬂied tq S.Olvﬁ the sar‘r(z-;\3)dgqtljat|ons replacing;p to &m,

der Waals forces valid for the case of different temperature¥V Ierer:n Is the rfnagr|1_et|c| Ipole. d ve th

of solids. We found the rate of energy release into a halﬁionnt e case of multipole origins we need to solve the equa-
space under the action of a multipole origin of harmonic
electromagnetic field and for an arbitrary origin in the case R R a"S(F)
where this origin may be represented as a series of multi- AZ+K>Z=—47up(—1)"——
poles.

AZD+k2z00=0, (A3)

95y 0, (Ad)

in the gap and the corresponding homogeneous equation in
APPENDIX A: A PROBLEM IN REGULAR FIELDS absorbing half spaces.
OF MULTIPOLE ORIGINS Boundary conditions may be found as well in the classical

. . ._textbook [13]. If the point dipole with the momenp
A common approach to solving the Maxwell equations in _ (0,0p,) is oriented along the axis, then the equations are

an inhomogeneous medium for the specified sources can be'.” ; . . .
found, for egxample, in12]. A solution ofpthe boundary-value sat|sf_|ed givenz=(0,0Z,). For a horlzpntal orientation of
problem on the dipole field in a gap between two half spaceghe dipole on thex or y axes, as shown if1.3], one needs to

was obtained iff5]. We are interested in the field absorbing ;sastuirtnies' ttr?ea\\//grlt?cglozg%dlgz?err]]tlrc])ft?ﬁebﬁg:]tga\gc(t:c?rn?rgt)?i’
materials 1 and Zsee Fig. 1, therefore, we shall seek a P

complete solution to this problem and extend the result to théhduced, i.e.,Z=(Z,,0Z;) and Z=(0,Z,,Z,). Physically,
cases of three regions with corresponding boundary condfhis is related to the effects of media 1 and 2. In other words,
tions in the planeg=0 andz=I, and to the case of multi- one more fieldZ is created by the secondary sources in me-
pole origins. The solution will be found by analogy with dia 1 and 2, which is the solution to the homogeneous equa-
solving the problem on a dipole above the conducting groundions (A3). The latter have to be completed with the bound-
[12—14; in all three media we determine the Hertz vecfor ~ @ry conditions expressing equality between the tangent
It enters by ordinary relationships with the scalar and vectofomponents of the diffraction field at the boundares0
potentials, and z=I. For thez-oriented dipole, wherz=(0,0Z,), we
have

1 R . .
<p=—adlvz, A= (A1) EZQ. 19z, 1 9z}

moopp em 92 gjuy 02

, (A5)

Using the Lorentz condition and the expressions via the ] . -
scalar and vector potentialsand A, we obtain the relation [oF thex-oriented dipole, wheZ =(Z,,0Z,)

betweené, H, andZ. For example, in absorbing media we 1oz, 1 9200 3 30
have z=2{;, = Z2=__X,;, Z=_Z%
m oz pp 9z JIY
o 1 S o
&V=——{grad(divZ")+k?Z"}, 17 oz 1 (20 5z0
€)1 |2z X] = . (j=1,2).
EM 0z X 8],(LJ iz IX
Lok - (AB)
7D =9 ot 70 (A2)
Mj Identically to (A6), conditions at the boundaries are ob-

. . tained for they-oriented dipole.
where ko=w/c is the wave number in vacuumkj2 4 P

= k(z,ej,uj , 1=1,2, and it is assumed th#t-e*“!. By similar
formulas one can find the field in the transparent gap, where
k?=Kk3eu.

The Maxwell equations in absorbing media and in the gap Taking into account the form of EqA4), we seek the
can be met if the Hertz vector is known for all three media.general solution of an inhomogeneous equation as a sum of a

APPENDIX B: EXPLICIT FORM
OF A GENERAL SOLUTION
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partial solution and the general solution of a homogeneous

PHYSICAL REVIEW & 026610

H1=a1(H++H_), (83)

equation. Assume that in the gap between the absorbing me-

dia Z,=p,Z,, zz: Px COS(PZ: Z,= Py Sil’](piw Zy=pxln,
Zy,=pyZy, Where
Z,=(—1)"uZi+ f Jo(Ar)[G_ exp(—q2)
0

+G, expgqz)]d A,

Zn=(-1)"nZi+ JO Jo(Ar)O[F_ exp(—q2)

+F ., exp(qz)]dA,

o

Z,= f Ji(Nr)[H_exp(—q2)+H, exp(qz)]dX,
0
(B1)

in absorbing materialZ{=p,z"), ZV=p, cosez, Z
=pysingZV, zW=p,z0, z=p,z), where

zf}):j Jo(Ar)G; exp(g,2) di,
0

zZih= f;Jour)Flexp(qlz)dx,
7N = J':Jl()\r)H1 exp(g,z)d\,

22= f:ao(mezexq—q2<z—|>]dx,

Zf):f:aomwzexp[—q2<z—|>]dx,

2<f>=rJlo\r)Hzexp[—qz(z—n]d)\, (B2)
0

whereq=\\?—k? q;=\\°~k?, (j=1,2). Here\ is the

constant of separation in the homogeneous Helmholtz equa-

tion.

From the boundary conditior®\5) and (A6) we find the
system of equations to define the coefficie@ts, F.., H.
GJ , FJ , H] s (]:1,2)

Gi=ai[uN(—1)"q" texp(—qh)+ G, +G_],

1
B1

Fi=pN(—1)"q" texp(—qh)+F +F_,

Gi=--[uN—-1)"q" texd —qh)+ G, -G_],

_a non—1
Fl—E[m\(—l)q exp—qh)+F, —F_],

Hy=ao[H , exp(al)+H_ exp—ql)],
Go=a[uNq" texd —q(l—h)]+ G, exp(ql)
+G_exp—ql],
Gz=;—zmm“—lexq—q<l—h>]+G_exp(—ql)
~G, exp(ah)],

Fo=uNg" texd —q(l—h)]+F, expigl)+F_exp—ql),

a2 n—1
I:z=E{M7\q exd —q(l=h)]+F_exp(—ql)
—F, expqh},

AF1—aiH1 =y NN (—=1)"q" texp( —qh)+F +F_]
+q(H_—H )},

NFo+0aH2= yo{ N[ uhg" T exp(—q(l —h))+F . exp(ql)
+F_exp—ql)]+q[H_exp—ql)

—H. expiql)]},
where
T Y Y
,BJ qi Yj EZ eu J ¢ aj M’
~  €j .
q=—" (j=12. (B4)

Thus, we have 12 equations in this system with 12 un-

known coefficients.

For solving of this system it is convenient to separate

evenm=2k and oddn=2k+1 (k=0,1,...) parts of a solu-
tion. Finally, we have

o 2mAgmt
e —
D

cosigl—qgh)+ ?sini’(ql—qh)],
ay

1~ ~

Go_ _ Z/Ll)\qn_l{
D

sinh(gl—qgh)+ ?COSK(ﬂ—qh)]:
@z

2 )\ m—1 [ T
=% coshgh)+ &sinf{qh)
D !

ay

G3

2ul\ n—-1[ ]
22N T gy + P costighy
L ay

o

2

D
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2 U\ m—1
(1-}:& Cosl’(ql—qh)—l—&sinl’(m—qh)}
D (£%)
(BS)
2 U\ n—-1
Fi’:_% Sinr(ql—qh)+'§—zcosf(ql—qh)},
m—1
Fg_z’m\g cosk(qh)+'j—isinf(qh)}
2ung"t
Fo— “[? sinnqh)+§—icoshqh)},
H§°=2[Fi°(l_w> coshql)+?5ian|)l
gD Y1 a
—FgO(l—ﬁ”.
Y2
1— 1-
Hgo:@[Fi‘(—y) F“( y) coshql)
qD Y1 Y2
+?sinr(ql) ]
ag
where
D:(ﬁ-l-&)co shigl)+ 1+&>smh(ql)
5:(%+%)coshql) 1+£3~,8)5|an|) (B6)
1 2

APPENDIX C: CALCULATION OF ELECTROMAGNETIC
LOSSES

Using formulas for components of a fie{d2) in the cy-
lindrical system of coordinates and obtained @ssions for

components of the Hertz vector we find losses in both half-e
spaces of different multipoles located in a plain gap in ac- L

cordance with(16). For even and odd multipoles composed
of the p, component of a unit dipole we have

2
ee: o Lw|pZ| fw el2

1z Re4€1|Ml|2 0 A d)\[Q1|G1| ]! (Cl)
ce__petelPd” fwx dN[@,GS2]. (C2)
2 4€2|M2|2 0 2=l &

For even multipoles composed pf , components,

PHYSICAL REVIEW &5 026610

Lo|peyl? (Q1 )
Qixy= Reﬁz N |Fe|ZQIT+|H1| Q1
2
_Fe* He |q)j-| —F He* ():]\1:| (C3)
2
ee _ Lw|vay| f 2 * (q2 ) 2
Qoxy= Re862|,u2|2 N d)|[F3l%q N2 +[H3l%q
2 2
S e|q2| +FSHE* q} (C4

For odd multipoles we have the above formulas, but with
corresponding odd coefficien@? ,, F7,, andH? ,.

For mixed even-odd € 0) multipoles composed op,
component we have

’ wolp,® (= .
ioZ_Rem fo NdN[;GT*Gy],  (CH
e¥o_ Lw |pZ| ” ex ~o
27 = RGW A dM[0.G3"G3]. (C6)

For mixed even—odde(* 0) multipoles constituted bp,
components we obtain

~Re —5|p”| NN FEFS *_r(qi_ki)
Q5= ®8eil il 19y
|0, /2 ql
FHE OG- FEHE - HE R ()
2 2 2
e*o_ “"|px,y| fw ok 0 % (95—k3)
Q2xy_ 862|,LL2|2 0 N dA FZ FzQz—)\z
|02 |? q§
+H§*ng2+ FS* g N He* 2N (C8)

For mixed even—oddgo*) multipoles we have the same
formulas with complex conjugated coefficienG‘iyszz,

F12 HiHI,, andFIHY,

Thus, we found the electromagnetic losses in two half
spaces originating from point multipoles of any order. As an
important limiting case it is clear to obtain corresponding
losses of a multipole situated over a half space.

It should be emphasized that we found the losses that may
be used for different practical cases. Whga [/.w is the
unit dipole, wherel the unit dimensionless vector, the di-
mensionality of this dipole i§p]=srad ! and the dimen-
sionality of the losses corresponding to this dipold (@]
=scm % in accordance with the requirement of the general-
ized Kirchhoff’s law, se¢6], or the Eq.(11). However, if we
use an “ordinary” dipole with the dimensionalityp]
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=g?2cmP?s™! we have ordinary losses with the dimension- . 2
ality [Q]=ergs®. The same, obviously, is applicable to coshql—qh)+a—23|nr(ql—qh)
multipole losses. As follows fron21), in order to obtain the ce=[qM? D[ ,
ordinary losse§Q]=ergs?, say, from the quadrupole com-
posed of thep, dipole B 2
sinh(gl—gh) + a—zcoshql—qh)
. ’Ce — qm 2 2 ,
Q7= lim (p,Az), (€9 w1 D2
‘AZI*?O (Dl)
2
we must simply substitute the value of this quadrupole into n & -
(C1), (C2) instead ofp, etc., for any multipole. o 2 costigh) ay sinh(qh)
From the above it follows the way to obtain relevant for- DR=1a"| BE '
mulas for the important case, when a multipole is situated at
some distance over a half space. B 2
sinh(gh) + —coshgh)
Be=|qm? - . m=2k,
APPENDIX D: CALCULATED COEFFICIENTS FOR |“|j|2
SPECTRAL CHARACTERISTICS
The calculation discussed in this paper gave the following k=0.1,....
coefficients for the even derivatives of tkg/ components of For the odd derivatives of the,y components we have
the electric field: coefficients
. B2 z
sinh(ql—qgh)+ —coshgl—qgh)
co= |qn|2 @2
” o |
2
B2 .
coshligql—qgh)+ —sinh(ql—qh)
~0__|~N|2 @2
Cn_ |q | ~ '
IDI?
, (D2)
. B
sinh(gh) + —coshgh)
D°= |qn|2 @1
" EE |
2
coshigh) + ?sinl‘(qh)
Bo=|qn2 A . n=2k+1, k=01,....
D?
For mixed odd-even derivative®{e) of the zcomponents of a field we obtain
_ & H _ H *| _~* ﬁ *| _ A%
costiql—qgh)+ —=sinh(ql—qh) || sinh(q*I —g*h) + —costg*l —q*h)
A% = —qmg*" = = =
IDI?
*
coshigh)+ ?sinr(qh)] sinh(g*h)+ f’—icoshq* h)
* @y @y
Brn =d"q*" : (D3)

DI?
For mixed odd-even derivative®{e) of the x,y components of a field we obtain
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coshiql—qgh)+ —Zsinl"(ql—qh) sinh(g*1—qg*h)+ —icosr(q*l —q*h)
@3 J

ap
o*e Mm% N_
Cmnn=0"q

IDJ?
r 1T *
sinh(gql—gh) + &coshql—qh) cosiig*l —g*h)+ f}—isinr(q*l —qg*h)
6o*e:qmq*n - @2 -t @2 -
mn

D2

[ B1 Il ) B1 ]
coshigh)+ —sinh(gh) || sinh(q*h)+ —coshg*h)

o*e M~ N_ *1 “1
Dmn=0"q

DI?

*

sinh(gh) + %cost{qh) cosig*h)+ %sinl’(q* h)
1 ] ]

*
1

Dor=a"a* " = (D4)
D
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