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Spectral properties of fluctuating electromagnetic fields in a plane cavity:
Implication for nanoscale physics

I. Dorofeyev,* H. Fuchs, and J. Jersch
Westfa¨lische-Wilhelms-Universita¨t, Wilhelm-Klemm-Strasse 10, D-48149 Mu¨nster, Germany

~Received 1 June 2001; published 24 January 2002!

Spectral power densities of fluctuating electromagnetic fields and their spatial derivatives of all orders in any
point of a transparent plane gap between two media described by different complex permittivities and by
different temperatures were derived on a basis of generalized Kirchhoff’s law. Electromagnetic losses into the
two absorbing media induced by a field of a point dipole or of point multipolelike origins situated in any place
of interest at the transparent gap were determined. The corresponding electrodynamical regular Green problem
for a point dipole and for point multipoles of any orders constituted by the point dipole was solved. We
demonstrate ways to obtain different asymptotic cases following from our general solution including the
problem for a half space, Planck’s formula for black body radiation, the van der Waals forces for solids kept at
different temperatures, and contributions from propagating and evanescent waves. Expressions for electromag-
netic loss of a point multipole of any order in selected geometry of the problem were derived and, as an
important limiting case related to problems of near field microscopy, when the multipole is situated over a half
space.

DOI: 10.1103/PhysRevE.65.026610 PACS number~s!: 41.20.Jb, 12.20.2m
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I. INTRODUCTION

A variety of important phenomena exists in physics
systems with a confined geometry of space. For instance
Casimir effect@1#, cavity induced processes@2,3#, evanescent
waves in nanoscale physics@4#, and thermal and quantum
electromagnetic fluctuations@5,6#. In practically all of the
above mentioned phenomena a spectral composition of e
tromagnetic fields~EMF! plays a major role. In order to
solve some related problems, we have to find spectral po
densities~SPD! of electromagnetic fields and their spac
derivatives in a cavity of various geometry or in a bound
space.

The knowledge of spatial derivatives permits us to fi
any forces acting on multipole systems in a cavity or nea
surface. A potential energy of a system in a fieldEW charac-
terized by a potentialf of another system may be repr
sented as a series,

U5ef2piEi1qik

]Ei

]xk
1¯ ~1!

where e is the charge,pW the dipole moment, andqik the
quadrupole moment of a system of interest, etc. If we kn
the multipole polarizabilities of a system we may calculat
force acting on the uncharged system in a stochastic fie

f i52
]

]xi
H 2a ik

~p!^EiEk&1a ik j
~q!K Ej

]Ei

]xk
L 1¯J . ~2!

The correlation functionŝEiEk&, ^Ej]Ei /]xk& and others
may depend on geometrical parameters of a bounded sp
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Besides conservative forces like~2!, a moving system
may be subjected to dissipative forces. In a free space,
tion may occur via interaction with the black body radiati
field or with a zero-point fluctuating field. Properties of flu
tuating electromagnetic fields in this case are known qu
well, but in reality, a particle is moving near a wall or i
channels of various geometrical forms, in other words, in
bounded space. In this case the dissipative and conserv
interactions are occurring via both radiative and evanesc
fields whose properties are determined by geometrical pe
liarities of the problem and by electromagnetic properties
a matter-constituted space. For example, the dissipative
teraction of a mobile particle with a half space was cons
ered in a relativistic approach on the basis of fluctuat
electrodynamics by Dorofeyevet al. @7#. In order to study
similar problems with other geometrical conditions we ne
to investigate properties of fluctuating fields in geometries
interest.

Other intriguing problems in science are connected w
the influence of surrounding matter, including geometri
conditions~‘‘background’’!, on the probability of a quantum
transition from state21 to state 2. We may consider th
background, for instance, as a stochastic action of other
tems, of random force fields of any nature, and other fluc
ating action. The influence of such stochastic action and
teraction of the quantum system with surrounding syste
may be described by the fluctuating part of Hamiltoni
U(t,z) as a random function of time and a regular~or ran-
dom!! function of geometrical properties, which is describ
by the parameterz. It may be, for example, a value of a ga
between two slabs, etc. In this case the complete Ha
tonian of a quantum system plus fluctuating background
the form

Ĥ5Ĥ01Û~ t,z!, ~3!

whereĤ0 is the Hamiltonian of an isolated quantum syste
or a quantum system in a free space.
s

©2002 The American Physical Society10-1



ou
to

ol
ld
ld

P

n-
a

-

o
of
rb

te
d

te
g
f
a

ca
la
s
f o

en
tia
it

a-
ch
e
u
-
u
g

ce
sn
r
o

a
te
a

ep-

nts
lp

-
r at
-
on-

-

the

rst
ori-

spa-
is
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Using the well-known formula from@8# for a probability
amplitudeC2←1 of a transition during the time (t2t0), we
obtain the probability of a quantum transition averaged
over an ensemble of realization of interaction with the s
chastic ‘‘background’’P2←15uC2←1u2 which is proportional
to the value^U21(t8)U21(t9)&, whereU21(t) is the matrix
element of the (2←1) transition.

In the case of a weak electromagnetic field in the dip
approachU.2pW EW , induced transitions in a stochastic fie
are proportional to a correlation tensor of the fie
^Ei(t8)Ek(t9)&. The velocity of a transitionW5P(t)/(t
2t0) in steady state stochastic fields is proportional to a S
at the frequency of the transition

W2←152p\22(
ik

pipk* Gik~v21!, ~4!

whereGik(v) is the Fourier transform of the correlation te
sor Gik(t82t9)5^Ei(t8)Ek(t9)& and the asterisk denotes
complex conjugation.Gik(v,z) may function on a geometri
cal parameterz of a problem.

Another related example is connected with the problem
energy level shifts of a quantum system under the action
stochastic EMF. In accordance with second order pertu
tion theory, the shift ofnth level equals

dEn52(
m

~pi !nm~pk!mn

En2Em
^EiEk&, ~5!

where the prime meansmÞn.
A lot of important problems in nanophysics are connec

with processes originating from near field interaction of bo
ies. For instance, in scanning probe microscopy it is of
necessary to understand reversible or irreversible changin
the surface under various kinds of action from the side o
probe. In the case of a near field optical microscope, it m
be photoexitation and heating followed by physical-chemi
phenomena at the surface. One problem here is to calcu
the energy release rate into a sample when the radiating
tem may be represented as a multipole system. Results o
paper may find useful applications in this area.

The goal of this paper is to calculate spectral power d
sities of fluctuating electromagnetic fields and their spa
derivatives in a plane gap consisting of two half spaces w
different complex permittivity and kept at different temper
tures. We based our calculation on the generalized Kir
hoff’s law @5,6#. In accordance with this law we solve th
corresponding Green problem and related problems for m
tipolelike origins for selected geometry of our problem. Lim
iting cases of our general solution we consider vario
asymptotic results. In particular, we consider the followin
~a! We consider two cases for propagating and evanes
waves expressing the solution via ordinary surface Fre
coefficients.~b! We demonstrate a transition to the case fo
half space and compare with the known solution for SPD
components of a fluctuating EMF in this case.~c! We show
how to obtain a general expression for the van der Wa
force for the general case of different temperatures of in
acted bodies.~d! We find a rate of energy liberation into
02661
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half space induced by a radiating system which may be r
resented by infinite multipole series.

II. PROBLEM STATEMENT

Here we use the reciprocity theorem to find compone
of a fluctuating field and its spatial derivatives with the he
of a point dipolelike or multipolelike origin. At first we con
sider two antiparallel point origins situated near each othe
the spatial pointsrW and rW1DsW. For example, electric com
ponents of a fluctuating field along the point dipoles are c
nected with fields of the dipoles by the formulas

Ea~rW !5E ~EWd•We2HW d•Wm!drW, ~6!

2Ea~rW1DsW !5E ~EWd8•
W

e2HW d8•
W

m!drW, ~7!

whereEWd ,HW d andEWd8 ,HW d8 are the fields of the two antipar
allel dipoles,pW 52pW 8, andWe andWm are the densities of the
external electric and magnetic currents that are creating
fluctuating fields.a may bex, y, or z. Summing up these two
equations and considering the limituDsWu→0 we have a de-
rivative of the componentEa of a fluctuating field along the
directionsW

]Ea

]s
5E ~EW 1

q
•We2HW 1

q
•Wm!drW, ~8!

where

EW 1
q5 lim

uDsWu→0

EW d1EWd8
uDsWu

and HW 1
q5 lim

uDsWu→0

HW d1HW d8
uDsWu

,

the strengths of a field of quadrupolelike point origin.
Thus, different point quadrupoles determine different fi

spatial derivatives. For example, a quadrupole of electric
gin determines spatial derivatives of the electric field

qxz→
]Ex

]z
, qyz→

]Ey

]z
, qzz→

]Ez

]z
. ~9!

and, correspondingly, a magnetic quadrupole determines
tial derivatives of the magnetic field. In the same way, it
possible to find derivations of any order

]nEa

]s1¯]sn
5E ~EW n

q
•We2HW n

q
•Wm!drW, ~10!

where

EW n
q5 lim

uDsWnu→0

EW n21
q 1EW n21

q8

uDsWnu

and
0-2
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SPECTRAL PROPERTIES OF FLUCTUATING . . . PHYSICAL REVIEW E65 026610
HW n
q5 lim

uDsWnu→0

HW n21
q 1HW n21

q8

uDsWnu
,

the strengths of a field of the multipolelike point origin.
In this way we are creating special kinds of multipol

with the help of a point dipole located in the selected dir
tions. In order to find the component of a fluctuating field
any spatial derivative we need to solve a corresponding p
lem for a pointlike dipole or multipole origin.

Multiplication of any component or derivative (Aa) from
~6,10! to a complex conjugated (Bb* ) from ~6,10! followed
by application of the electrodynamical fluctuatio
dissipation theorem~FDT! @5,6# gives the generalized Kirch
hoff’s law,

^Aa~v,rW1!Bb* ~v,rW2!&5
2

p
Q~v,T!QAB* ~rW1 ,rW2!, ~11!

whereQAB* is the mixed electromagnetic loss of unit mu
tipoles located in the spatial pointsrW1 and rW2 , correspond-
ingly, Q(v,T)5(\v/2)coth(\v/2kBT), kB is the Boltzmann
constant, and the brackets represent averaging over an
semble. Thus, in order to obtain̂uEau2&, ^Ea]Ea* /]b& or
^u]Ea /]bu2&, we need to calculate, correspondingly, t
electromagnetic losses of a unit dipole, mixed losses of a
dipole–quadrupole system, and the losses of unit quadru
as situated at the points of interest. The same statemen
viously concerns any derivatives and multipoles.

We will seek the SPD of fields between two absorbi
homogeneous isotropic media with different temperatu
~Fig. 1!. The half spacez<0 is filled with a material char-
acterized by complex constantse1 ,m1 , the half spacez> l is
filled with a medium with the constantse2 ,m2 , while the
gap between them is a vacuum or filled with a nonabsorb
medium with the real dielectric constants«̇,m. We assume
that two subsystems of extraneous random sources of flu
ating fields are located in two thermostats with temperatu
T1 andT2 maintained constant. The system consists of eq
librium subsystems, justifying the application of FDT. Th
relaxation time of the overall system is possibly to be co
sidered much larger than the relaxation times of two s
systems.

In our case using the reciprocity theorem and the princ
of superposition of fields, we make the required square c

FIG. 1. Representation of two absorbing homogeneous isotr
media.
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binations from the components of the fluctuation field. Ne
after averaging over the equilibrium ensembles of rand
currents, we apply the electrodynamic FDT to obtain me
square characteristics of the fluctuating field, expressed
the thermal losses of regular fields in either medium, indu
by point dipole placed in the gap at some distanceh from the
lower medium and oriented in an appropriate fashion. A
result, multiplying the lossesQ1 in the first medium byQ1 ,
and in the second medium (Q2) by Q2 , we have, for ex-
ample, forz components of a fluctuating EMF, another for
of the generalized Kirchhoff’s law

^uEi~rW !u2&5
2

p
$Q1Q1~pi

e ;rW !1Q2Q2~pi
e ,rW !%,

^uHi~rW !u2&5
2

p
$Q1Q1~pi

m ;rW !1Q2Q2~pi
m ,rW !%, ~12!

where notationspi
e and pi

m indicate the requirement to find
the losses of regular fields induced by electric and magn
point dipoles, respectively,i 5x,y,z. It directly follows from
the above discussions that the related expressions for
spatial derivative of fluctuating EMF using multipoles com
posed of a point dipole can be obtained.

Further, we separate the electromagnetic losses from
even and odd multipoles, for convenience. We introduce
following notations for even derivatives of field componen

K U]mEz

]zm ~rW,v!U2L [^uEz
~m!~rW,v!u2&[^uEz

~m!u2&,

~13!

K U]mEx,y

]zm ~rW,v!U2L [^uEx,y
~m!~rW,v!u2&[^uEx,y

~m!u2&,

wherem52k, k50,1, . . . .
A very important case,m50, corresponds to componen

of EMF, namely,

^uEz
~0!u2&[^uEzu2&, ^uEx,y

~0!u2&[^uEx,yu2&. ~14!

For odd derivatives we have the same notations, but w
another letter,n52k11, k50,1, . . . . Formixed derivatives
we have, for example, for thez component of a field,

K ]mEz

]zm ~rW,v!
]nEz*

]zn ~rW,v!L [^Ez
~m!~rW,v!Ez

~n!* ~rW,v!&

[^Ez
~m!Ez

~n!* &. ~15!

For components of a magnetic field we have similar n
tations. Everywhere in the paper we will use notations fo

ic
0-3
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I. DOROFEYEV, H. FUCHS, AND J. JERSCH PHYSICAL REVIEW E65 026610
fluctuating field asEW ,HW differing from the notations for a
regular fieldEW,HW , which are generated by pointlike multipo
origins.

Then, for convenience we introduce mixed losses for e
and odd multipole origins and seek any losses as an inte
on the pointing vector all along, for example, surfacez50
by an integration in a cylindrical coordinates system

Qm,n
e,o 52

c

16p E
0

`

r dr E
0

2p

dw$@~EWm
e 1EWn

o!3~HW m
e* 1HW n

o* !#z

1c.c.%z50 , ~16!

whereEWm,n
e,o andHW m,n

e,o and the fields are created by even
odd multipole pointlike origins ofm or n orders~c.c. means
complex conjugation!. So, from ~16! we have any electro
magnetic losses originating from pointlike multipoles

Qm,n
e,o 5Qmm

ee* 1Qm,n
e* o1Qm,n

e,o* 1Qnn
oo* , ~17!

whereQmm
ee* are the losses of evenm-order multipoles,Qm,n

e* o

and Qm,n
e,o* the mixed even-odd multipole losses ofm and n

orders correspondingly, andQnn
oo* the n-order odd multipole

losses. Obviously, similar to formula~16! but with an oppo-
site sign is valid for loss calculations in a second half spa

III. SOLUTION TO THE PROBLEM

A. Multipole representations

As a first step we determine the Helmholtz equation
multipoles composed of point dipoles situated in directio
of interest. As shown in Appendix A from the Maxwell sy
tem of equations and selected relationships of the Hertz
tor with scalar and vector potentials, it follows the Helmho
equation for a dipole origin is

DZW d1k2ZW d524pmpW d~rW !, ~18!

where pW d(rW) is the unit pointlike dipole origin of a field
which is determined by the Hertz vectorZW d . This is the
ordinary Green problem. For another point dipole,pW 8, at a
distancerW1DsW1 from the first one, we have another equ
tion:

DZW d81k2ZW d8524pmpW 8d~rW1DsW1!. ~19!

After summing up ~18! with ~19! and decomposingd(rW
1DsW1).d(rW)1DsW•grad d(rW) we have an equation for
quadrupole composed of two antiparallel pointlike dipolespW
and pW 852pW and separated by a distanceuDsW1u along the
directionsW1,
02661
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DZW 1
q1k2ZW 1

q54pmpW
]d~rW !

]s1
, ~20!

where

ZW 1
q5 lim

uDsW1u→0

ZW d1ZW d8
uDsW1u

.

By a similar means it is possible to obtain the equation
any multipole origin,

DZW n
q1k2ZW n

q52~21!n4pmpW
]nd~rW !

]s1¯]sn
, ~21!

where

ZW n
q5 lim

uDsWnu→0

ZW n21
q 1ZW n21

q8

uDsWnu
.

As usual, we will seek a general solution to Eq.~21! as a
sum of a partial solution of~21! and a general solution o
the corresponding homogeneous equation. In order to
a partial solution we use the Green functionZW d
5mpW exp(2ikurWu)/urWu of the problem~18!. Using properties of
generalized functions it is possible to find a correspond
solution of the problem~21!:

ZW n
q5~21!nmpW E

V8

exp~2ikurW2rW8u!
urW2rW8u

]nd~rW8!

]s18¯]sn8
dV8

5~21!nmpW
]n

]s1¯]sn

exp~2ikurWu!
urWu

. ~22!

Finally, as follows from~22!, in order to find a partial
solution for any multipole we should take the correspond
derivatives with respect to the Green’s function for fr
space.

B. Integral representation of multipole origins

To solve the problem~21! we need to find an integra
representation of the corresponding partial solution. Fo
dipole we have the well-known Sommerfeld representat
@14#,

exp~2ikR!

R
5E

0

`

J0~lr !
exp~2quz2hu!

q
l dl, ~23!

where J0 is the Bessel function of the zero order,q
5Al22k2, R5Ax21y21(z2h)2, and r 5Ax21y2 in ac-
cordance with Fig. 1.
0-4
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Since we have homogeneous conditions along thex, y directions~see Fig. 1!, we seek onlyz derivatives. For a quadrupol
using the Sommerfeld representation~23! we have

]

]z S exp~2ikR!

R D5
]

]z H E
0

`

J0~lr !q21 exp~2quz2hu!l dlJ

55 2E
0

`

J0~lr !exp@2q~z2h!#l dl ~z.h!

E
0

`

J0~lr !exp@2q~h2z!#l dl ~z,h!.

~24!
d

tia

er

tr
o

c
en
s

re
ra

tab-
Using the function sgn(x)51 (x.0), sgn(x)50, (x50),
sgn(x)521 (x,0), and known relations for generalize
functions@sgn(x)#(1)52d(x) and f (x)d(x)5 f (0)d(x) we can
write the result in the compact form

]n

]zn

exp~2ikR!

R
5@sgn~h2z!#nE

0

`

qn21J0~lr !

3exp~2quz2hu!l dl

1(
j 50

N

@sgn~h2z!#~n22 j 21!

3E
0

`

q2 j J0~lr !l dl, n50,1, . . . ,

~25!

whereN5(n22)/2 for n52k andN5(n23)/2 for n52k
11, k50,1,2, . . . . At negativeN the sum in~25! is zero.

Thus, we obtain the integral representation of the par
solution for a multipole origin of any ordern50,1, . . . ,
namely,ZW n

q5(21)nmpW Zn
q , where

Zn
q5H @sgn~h2z!#nE

0

`

qn21J0~lr !exp~2quz2hu!l dl

1(
j 50

N

@sgn~h2z!#~n22 j 21!E
0

`

q2 j J0~lr !l dlJ ,

~26!

where the casen50 corresponds to the classical Somm
feld integral representation for a dipole origin.

C. Spectral characteristics of a fluctuating field

As follows from ~11! and ~12!, in order to obtain some
spectral characteristic, we ought to determine the elec
magnetic loss of a point multipole into both half spaces. F
this purpose~see Appendix B! we found the electromagneti
field of a multipole as situated in any point of the transpar
gap. Then, in accordance with~16! we had to seek the losse
~see Appendix C!.

Using calculated losses from Appendix C with the cor
sponding coefficients from Appendix B we find the spect
02661
l
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power densities of a field and spatial derivatives, as es
lished by the generalized Kirchhoff’s law~12!.

For even derivatives ofz components of an electric field

^uEz
~m!u2&5

2Q1

pve
ReE

0

` l3 dl

iq*
Am

e 1
2Q2

pve
ReE

0

` l3 dl

iq*
Bm

e ,

~27!

where

Am
e 5uqmu2

b1

ã1

Ucosh~ql2qh!1
b2

ã2

sinh~ql2qh!U2

uD̃u2
,

Bm
e 5uqmu2

b2

ã2

Ucosh~qh!1
b1

ã1

sinh~qh!U2

uD̃u2
,

m52k, k50,1,... . ~28!

For odd derivatives ofz components of an electric field
we have the similar formula~27!, but with odd coefficients

An
05uqnu2

b1

ã1

Usinh~ql2qh!1
b2

ã2

cosh~ql2qh!U2

uD̃u2
,

Bn
05uqnu2

b2

ã2

Usinh~qh!1
b1

ã1

cosh~qh!U2

uD̃u2
,

n52k11, k50,1,... . ~29!

For the even derivatives ofx, y components of an electric
field we found

^uEx,y
~m!u2&5

Q1

pve
ReE

0

` l dl

iq
Cm

e 1
Q2

pve
ReE

0

` l dl

iq
Dm

e ,

~30!

where
0-5
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Cm
e 5q2

b1

ã1
C̃m

e 2k2
b1*

a1*
Cm

e

and

Dm
e 5q2

b2

ã2
D̃m

e 2k2
b2*

a2*
Dm

e , ~31!

with coefficients~D1!.
For the odd derivatives of thex, y components we have

expression~30!, but with odd terms

Cn
o5q2

b1

ã1
C̃n

o2k2
b1*

a1*
Cn

o

and

Dn
o5q2

b2

ã2
D̃n

o2k2
b2*

a2*
Dn

o , ~32!

and corresponding coefficients~D2!. For mixed odd-even
derivatives (o* e) of the z components of a field we have

^Ez
~m!Ez

~n!* &5
2Q1

pve
ReE

0

` l3 dl

iq*
b1

ã1
Amn

o* e

1
2Q2

pve
ReE

0

` l3 dl

iq*
b2

ã2
Bmn

o* e , ~33!

with expressions~D3!.
For mixed even-odd derivatives (e* o) of the z compo-

nents we have the same formula~33!, but with complex con-

jugated coefficientsAmn
e* o5(Amn

o* e)* andBmn
e* o5(Bmn

o* e)* .
For mixed odd-even derivatives (o* e) of the x,y compo-

nents of a field we have

^Ex,y
~m!Ex,y

~n!* &5
Q1

pve
ReE

0

` l dl

iq
Cmn

o* e

1
Q2

pve
ReE

0

` l dl

iq
Dmn

o* e , ~34!

where

Cmn
o* e5k2

b1*

a1*
Cmn

o* e2q2
b1

ã1
C̃mn

o* e

and

Dmn
o* e5q2

b2

ã2
D̃mn

o* e2k2
b2*

a2*
Dmn

o* e , ~35!

and coefficients~D4!.
We obtain corresponding formulas for mixed even-o

derivatives (e* o) of x,y components of a field from~34!,

replacingCmn
e* o andDmn

e* o with the coefficients complex con
jugated to~D4!.
02661
IV. DISCUSSION

A. Spectral power densities for propagating
and evanescent waves in a plane cavity

Naturally, we must obtain any classical consequen
from our general solution. We demonstrate corresponding
sults in a very important case for SPD components of fl
tuating EMP. It directly follows from~27! and ~28! for the
casem50. For convenience we introduce the distanced5 l
2h between a second half space and a point of interest in
gap. After some obvious transformations obtained by elim
nating terms exp(ql2qh) and exp(qh) from the numerators of
Am

e , Bm
e simultaneously with the term exp(ql) from denomi-

nators ofAm
e , Bm

e , we have for thez component of a field

^uEzu2&5
iQ1

pc
Am

e E
0

`

exp@2~q1q* !h#H l2

k2 S1eI1e
1 J l dl

1
iQ2

pc
Am

e E
0

`

exp@2~q1q* ! d#

3H l2

k2 S2eI2e
1 J l dl, ~36!

and for thex, y components

^uEx,yu2&5
iQ1

2pc
Am

e E
0

`

exp@2~q1q* !h#H uqu2

k2 S1eI1e
2

1S1mI1m
1 J l dl1

iQ2

2pc
Am

e E
0

`

exp@2~q

1q* !d#H uqu2

k2 S2eI2e
2 1S2mI2m

1 J l dl, ~37!

where

Si e5
k~qi* /e i* 2qi /e i !

euq/e1qi /e i u2
, Sim5

k~qi* /m i* 2qi /m i !

muq/m1qi /m i u2

~ i 51,2!, ~38!

and

I1e
6 5U16r2

p exp@22q~ l 2h!#

12r1
pr2

p exp~22ql !
U2

,

I2e
6 5U16r1

p exp@22q~ l 2d!#

12r1
pr2

p exp~22ql !
U2

, ~39!

I1m
6 5U16r2

s exp@22q~ l 2h!#

12r1
sr2

s exp~22ql !
U2

,

I2m
6 5U16r1

s exp@22q~ l 2d!#

12r1
sr2

s exp~22ql !
U2

, ~40!

where
0-6
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r i
p5

~12b i /ã i !

~11b i /ã i !

5
~e1Av2em/c22l22eAv2e im i /c22l2!

~e iAv2em/c22l21eAv2e im i /c22l2!
~ i 51,2!,

~41!

r i
s5

~12b i /a i !

~11b i /a i !

5
~m iAv2em/c22l22mAv2e im i /c22l2!

~m iAv2em/c22l21mAv2e im i /c22l2!
~ i 51,2!

~42!

are the ordinary surface reflection Fresnel coefficients fop
ands polarized waves, respectively.

Obviously, the termsI1e
6 ,I2e

6 and I1m
6 ,I2m

6 describe inter-
ference processes in the plane gap, similar to correspon
formulas of the Fabry-Perot system. RearrangingSe andSm ,
I1e

6 ,I2e
6 and I1m

6 ,I2m
6 in ~36! and~37! gives an expression fo

the SPD of magnetic components,^uHzu2& and ^uHx,yu2&.
After that it is easy to obtain a formula for the spect

density of energy of the electric,Uev5e^uEu2&/4p, and
magnetic,Umv5m^uHu2&/4p, parts of fluctuating EMF and
the total spectral density of energyUv5Uev1Umv over
positive frequencies

Uv5
iQ1Aem

4p2c E
0

`

exp@2~q1q* !h#H S uqu2I1e
2 1l2I1e

1

k2

1I1e
1 DS1e1S uqu2I1m

2 1l2I1m
1

k2 1I1m
1 DS1mJ l dl

1
iQ2Aem

4p2c E
0

`

exp@2~q1q* !d#H S uqu2I2e
2 1l2I2e

1

k2

1I2e
1 DS2e1S uqu2I2m

2 1l2I2m
1

k2 1I2m
1 DS2mJ l dl. ~43!

As was shown by different authors, the quantityq
5Al22k2 determines propagating and evanescent wa
Further, we study the simplest asymptoticl→` that can be
found analytically. Of course, the general case for any va
of the gap requires numerical solutions.

Large l physically means thatl is much larger than al
wavelengths determining a fluctuating EMF of a body. Th
we may neglect all interference processes and putI1e

6 5I2e
6

5I1m
6 5I2m

6 .1 in ~39! and~40! and in all corresponding for
mulas~36!, ~37!, and~43!. In this approximation we conside
two essentially different waves.

1. Propagating waves and black body radiation

We consider an equilibrium caseQ15Q25Q in the limit
l→`. For propagating waves we havel,k, when q1q*
02661
ng

l

s.

e

n

50 and uqu25k22l2. In this case the spectral density o
energyUv is not dependent on a distanth or d in the gap and
from ~43! we have

Uv5
iQAem

2p2c H E
0

`

~S1e1S1m!l dl1E
0

`

~S2e1S2m!l dlJ .

~44!

As in @5#, we introduce the relative indexes of refractio
Ni5Ae iui /em, i 51,2, and the variablex5l/k5sinu,
whereu is the angle of incidence of a propagating wave
absorbing matters. With these notations we rewrite~38! in
the form

Sj e52
i~12Ri

j !

2A12x2
and Sj m52

i~12R'
j !

2A12x2
~ j 51,2!,

~45!

where

Ri
i 5ur i

pu25Uã iA12x22ANi
22x2

ã iA12x21ANi
22x2U2

5Uã i cosu2ANi
22sin2 u

ã i cosu1ANi
22sin2 u

U ,
R'

i 5ur i
su25Ua iA12x22ANi

22x2

a iA12x21ANi
22x2U

5Ua i cosu2ANi
22sin2 u

a i cosu1ANi
22sin2 u

U2

, ~46!

where Ri
i and R'

i are the energetic reflection coefficien
from absorbing half spaces at the angleu for waves with the
electric vector in parallel and, correspondingly, perpendicu
with respect to the plane of incidence andi 51,2, as usual.
Because both polarizations of waves of stochastic EMF
absolutely equivalent, the total reflection coefficients a
equal,Ri5(Ri

i 1R'
i )/2. As a result we have for propagatin

waves

Uv5
QAemk2

2p2c H E
0

1

~12R1!
x dx

A12x2

1E
0

1

~12R2!
x dx

A12x2J . ~47!

For the black body case we should putRi50, (i 51, 2) by
definition. Finally, we have the well-known formula

Uv5
Qk0

2

p2c
n35U0vn3, ~48!

wheren5Aem is the index of refraction of the transpare
media in the gap, and the spectral density of energy of bl
body radiation in a vacuum is
0-7
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U0v5
\v3

p2c3 S 1

2
1

1

exp~\v/kBT!21D . ~49!

2. Evanescent waves and related asymptotics

These waves are defined by the relationl.k, when q
2q* 50 and uqu25l22k2. With the same approximation
l→` after introducing of the variables y5q/k
5Al2/k221, we obtain from~43! the spectral density o
energy for evanescent waves:

Uv
ev5

Q1k0
2

2p2c
n3 E

0

`

exp@22khy#~S1e1S1m!~y211!y dy

1
Q2k0

2

2p2c
n3 E

0

`

exp@22k dy#~S2e1S2m!~y211!y dy.

~50!

For Q15Q25Q using an estimation of theSi e whereSim
as was done in@5,6# or in @8# for the case where relativ
refraction indexes of the half spaces are not very large,
found with an exactness up to the terms of order 1/(kh)2 and
1/(kd)2

Uv
ev'U0vn3 H ~a19/11ã1u21a19/u11a1u2!

@k~ l 2d!#3

1
~ ã29/u11ã2u21a29/u11a2u2!

@k~ l 1h!#3 J . ~51!

It should be emphasized that~51! is valid for large gap
values. To study an evanescent field structure in the arbit
value of l we have to use the general formula~43!.

B. Spectral power densities of fluctuating EMF
for a half space

Another important related problem is the case of a h
space whenl 5`, ã15ã2 , a15a2 , andT15T2 . In such a
case we will consider any characteristics at a finite dista

h. It is clear that the coefficientsBm,n
e,o , Dm,n

e,o , Bmn
o* e , Dmn

e* o ,

Bmn
o* e are equal to zero and we have SPD of a fluctuat

EMF and its derivatives at the distanceh over a half space
described by complex permittivitiese1 andm1 . We demon-
strate the result in the familiar form of SPD for compone
of fluctuating EMF over a half space. It follows directly from
~27!, ~30!, or ~43! for the casem50. After some obvious
transformations we have

^uEzu2&5
2Q

pve
ReE

0

` l3 dl

iq*
b1

ã1

exp@2~q1q* !h#

u11b i /ã1u2
,

~52!

^uEx,yu2i &5
Q

pve
ReE

0

` l dl

iq H q2
b1

ã1

exp@2~q1q* !h#

u11b1 /ã1u2

2k2
b1*

a1*
exp@2~q1q* !h#

u11b1 /a1u2 J . ~53!
02661
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After that it is easy to obtain an expression for spect
density of energy of the electric part of fluctuating EM
Rearrangingã and a gives an expression for the spectr
density of energy of the magnetic part. A total sum det
mines a spectral density of energy of the fluctuating elec
magnetic field at any point over a half space and may
reduced to the form previously obtained by authors of
theory of thermal fluctuating fields@5,6#

Uv5
iQAem

4p2c E
0

`

exp@2~q1q* !h#l dlS uqu21l2

k2 11D
3~S1e1S1m!. ~54!

Equation ~54! obviously follows any known asymptotic
for propagating and evanescent fields, which may be fo
from the above mentioned references.

C. An application to the theory of van der Waals forces

The van der Waals force between two half spaces may
found as thez component of the Maxwell stress tensor

Fv5Tv
zz5e~^uEzu2&2^uExu2&2^uEyu2&!/4p1m~^uHzu2&

2^uHxu2&2^uHyu2&!/4p. ~55!

For different temperatures and identical materials the c
responding solution was found in@9#. Here we show that the
relevant solution for different materials differs only by obv
ous modification. Using~27! and~30! for the casem50 we
may write down various forms of~55! and find the stress
tensor at any appropriate surface in the transparent gap.
example, at the surfaceh50 we have

F̃v5
Q1

2p2v
ReE

0

` ql d l

i
S d2

uDu2
1

d̃2

uD̃u2
D

1
Q2

2p2v
ReE

0

` ql dl

i
S d1

uDu2
1

d̃1

uD̃u2
D ~56!

or

Fv52
@Q11Q2#

4p2v
ReE

0

` ql dl

i
S D

D
1

D̃

D̃
D

1
@Q22Q1#

4p2v
ReE

0

` ql dl

i
S d12d2

uDu2
1

d̃12 d̃2

uD̃u2
D ,

~57!

where

D5S b1

a1
1

b2

a2
D sinh~ql !1S 11

b1b2

a1a2
D cosh~ql !,

D̃5S b2

ã1
1

b2

ã2
D sinh~ql !1S 11

b1b2

ã1ã2
D cosh~gl !,
0-8
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d15
b2

a2
S q

q*
2Ub1

a1
U2D , d̃15

qb2

ã2
S q

q*
2Ub1

ã1
U2D ,

d25
b1

a1
S q

q*
2Ub2

a2
U2D , d̃25

b1

ã1
S q

q*
2Ub2

ã2
U2D . ~58!

From ~56! using ~B6!, it is not difficult to prove that

ReE
0

` ql d l

i
S D

D
1

D̃

D̃
D 52ReE

0

` ql d l

i
S d1

uDu2
1

d̃1

uD̃u2

1
d2

uDu2
1

d̃2

uD̃u2
D . ~59!

We represent~59! in the forma1b51, where

a52ReE
0

` ql d l

i
S d1

uDu2
1

d̃1

uD̃u2
D Y ReE

0

` ql d l

i

3S D

D
1

D̃

D̃
D ,

b52ReE
0

` ql d l

i
S d2

uDu2
1

d̃2

uD̃u2
D Y ReE

0

` ql d l

i

3S D

D
1

D̃

D̃
D . ~60!

Substituting~60! for ~57! gives

Fv52
@aQ11bQ2#

2p2v
ReE

0

` ql d l

i8
S D

D
1

D̃

D̃
D . ~61!

As follows from a comparison of~61! and ~57! for iden-
tical materials, whend15d2 , d̃15 d̃2 or for the caseQ1
5Q2 , we havea5b51/2. We prove now that the sam
values ofa andb are valid for a general case.

Let us assume for different materials that the constana
and b differ from 1/2, for examplea51/21a1 and b51/2
1b2 . Substitution of these values in~61! gives

Fv52
@Q11Q2#

4p2v
ReE

0

` ql d l

i
S D

D
1

D̃

D̃
D

2
@a1Q11b2Q2#

2p2v
ReE

0

` ql d l

i
S D

D
1

D̃

D̃
D . ~62!

After comparison of~62! with ~57! with the help of~59! we
have the equation
02661
@a'Q11b2Q2#

2p2v
ReE

0

` ql d l

i
S d11d2

uDu2
1

d̃11 d̃2

uD̃u2
D

5
@Q22Q1#

4p2v
ReE

0

` ql d l

i8
S d12d2

uDu2
1

d̃12 d̃2

uD̃u2
D .

~63!

Term-by-term equalizing in~63! gives the system of equa
tions

Q22Q152~a1Q11b2Q2!,
~64!

Q12Q252~a1Q11b2Q2!.

If Q1ÞQ2 the system~64! will have a solution only when
a15b250. It means thata5b51/2 for any case and we
have for different materials and temperatures the expres
~61! for a spectral density of force. Finally, an integratio
over positive frequencies~see, for instance,@10,11#! yields
the formula obtained for the caseQ15Q2 and nonmagnetic
solids by Lifshitz. But for different temperatures we have

F5
kBT1

2pc3 (
n50

` E
1

`

p2jn
3H F S s1n1p

s1n2pD S s2n1p

s2n2pDexp~2pjnl /c!

21G21

1F S s1n1e1n p

s1n2e1np D S s2n1e2np

s2n2e2npDexp~2pjnl /c!

21G21J dp1
kBT2

•

2pc3 ( 8
m50

` E
1

`

p2jm
3 H F S s1m1p

s1m2pD
3S s2m1p

s2m2pDexp~2pjml /c!21G21

1F S s1m1e1mp

s1m2e1mpD
3S s2m1e2mp

s2m2e2mpDexp~2pjml /c!21G21J dp, ~65!

whereen5e( i jn), em5e(ijm) are the values of the dielec
tric constants on the imaginary axis,sin5Ae in211p2, sim

5Ae im211p2, i 51,2. The prime in the sum indicates th
all terms with n50 and m50 have to be taken at hal
weight.

The formula~65! can be used to find the force for an
distance, materials, and temperaturesT1 and T2 . Some
asymptotic cases may be found in@9–11#. Using the solution
for the plane-parallel case it is possible to obtain a rela
solution for solids terminated by nonplane surfaces as
rived, for example, by conformal mapping@15#.

D. Radiating multipole system over a half space:
Energy rate liberation

In order to demonstrate an application of the obtain
results concerning calculations of spatial derivatives, here
find out the energy rate liberation into a half space under
action of the origin of a harmonic electromagnetic field. W
consider the case where the origin may be represented
series of multipoles. It is clear that such a situation is r
0-9
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evant for scanning near-field optical microscopy~SNOM!.
We will obtain the result for a partial case of axial multipol
consisting of the dipole withz orientation and located in a
vacuum (e,m51) at the distanceh over a half space. Taking
into account our remarks at the end of Appendix C and f
mulas~27!, ~28!, and ~C1! for even and corresponding for
mulas for odd multipoles in the case for a half spacel
5`), it is easy to obtain the value of energy release rate
even multipoles:

Qm
e 5

icuQm
z u2

2 E
0

`

l3 dl exp@2~q1q* !h#uqmu2Se ,

~66!

where Qm
z the multipole of the m order, m52k, k

50,1, . . . and for oddmultipoles

Qn
o5

icuQn
zu2

2 E
0

`

l3 dl exp@2~q1q* !h#uqnu2Se , ~67!

where Qn
z the multipole of the n order, n52k11, k

50,1, . . . . It is should be clear thatQ0
z[pz is the dipole

moment,Q1
z the quadrupole moment,Q2

z the octupole mo-
ment, and so on.

We consider the near-field regime and a contribution o
from evanescent waves,q1q* 52q, whereq is the pure real
number. By introducing the new variabley5q/k0 , k0
5v/c we have, say, from~66!

Qm
e 5

icuQm
z u2k0

2m14

2 E
0

`

exp~22khy!~y2m13

1y2m11!Se dy, ~68!

and a similar expression from~67!.
To take the integral in~68! we simplify Se as was done in

@7#. Namely, we consider two dramatically different cas
for good conductorsue1(v)u@1 and for dielectricse1(v)
>1, wheree1(v)5e18(v)1ie19(v). For conductors and di
electrics we have, respectively,

iSe;
1

y2A v

2ps1
and iSe;

2e19~v!

yu11e1~v!u2
, ~69!

wheres1 represents the conductivity of a half space ma
rial.

Substituting~69! for ~68! and using the handbook of in
tegrals gives us the terms of order (2kh)2(2m11) for dielec-
trics

Qm
e .

ve19~v!

u11e1~v!u2

uQm
z u2G~2m13!

22m13hm13 , ~70!

whereG is the gamma function,m52k, k50,1, . . . .
We have the same expression for odd multipoles, bu

~70! n52k11, k50,1, . . . should be substituted.
Finally, we may write an energy release rate for ev

multipoles summing up all expressions like~70!:
02661
r-

r

y

,

-

in

n

Qe.
ve19~v!

u11e1~v!u2 H uQ0
zu2G~3!

23h3 1
uQ2

zu2G~7!

27h7 1
uQ4

zu2G~11!

211h11

1¯J . ~71!

The corresponding expression for odd multipoles is

Qo.
ve19~v!

u11e1~v!u2 H uQ1
zu2G~5!

25h5 1
uQ3

zu2G~9!

29h9 1
uQ5

zu2G~13!

213h13

1¯J . ~72!

The combination of~71! and ~72! gives us the general for
mula for the rate of energy liberation into the dielectric h
space under the action of a harmonic electromagnetic fiel
the axial multipole system:

Q.
ve19~v!

u11e1~v!u2 (
k50

`
G~2k13!

22k13h2k13 uQk
zu2. ~73!

By the same method of integration we obtain the form
for the case of good conductors:

Q.
v2z18

c (
k50

`
G~2k12!

22k12h2k12 uQk
zu2, ~74!

wherez185Av/8ps1, the real part of an impedance of th
half space.

Obviously, it is possible to do the same calculations
multipoles composed of thepx andpy dipoles and find com-
plete multipole series. This will be done in our forthcomin
publications.

V. CONCLUSION

In this paper we have studied spectral properties of th
mal fluctuating electromagnetic fields in a transparent pl
layer between two absorbing half spaces. The material
the half spaces are characterized by different complex e
tric and magnetic permeabilities. We assumed that two in
pendent systems of external random sources of thermal
tuating fields are distributed into the half spaces
thermostats with, in general, different constant temperatu
Spectral power densities of fluctuating electromagnetic fie
and the spatial derivatives of all orders in any point of
transparent plane gap between two media were found w
the help of the generalized Kirchhoff’s law. In accordan
with this law we calculated electromagnetic losses into
two absorbing media induced by a field of a point dipoleli
or point multipolelike origins as situated in a point of intere
at the transparent gap. The corresponding electrodynam
regular Green problem for a point dipole and the rela
problem for multipoles of any orders composed of the po
dipole in the directions of interest was solved. In order
solve this problem we found an integral representation of
inhomogeneous part of a solution for point multipoles us
the well-known Sommerfeld integral representation of
0-10
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lated solution for a point dipole. We have shown vario
forms of obtained solutions for spectral power densities
cluding ordinary surface reflection Fresnel coefficients fos
andp polarized waves. It was demonstrated from our gene
solution that it is simple to obtain the known asympto
cases. For instance, it is possible to obtain the spectral po
densities of all components of fluctuating electromagne
fields at any spatial point in a plane gap or over a half spa
Using these formulas we obtained the spectral densitie
energy for both propagating and evanescent waves.
Planck formula for the black body radiation directly follow
from the formula for propagating waves. On the basis of
solutions obtained we found a general expression for the
der Waals forces valid for the case of different temperatu
of solids. We found the rate of energy release into a h
space under the action of a multipole origin of harmo
electromagnetic field and for an arbitrary origin in the ca
where this origin may be represented as a series of m
poles.

APPENDIX A: A PROBLEM IN REGULAR FIELDS
OF MULTIPOLE ORIGINS

A common approach to solving the Maxwell equations
an inhomogeneous medium for the specified sources ca
found, for example, in@12#. A solution of the boundary-value
problem on the dipole field in a gap between two half spa
was obtained in@5#. We are interested in the field absorbin
materials 1 and 2~see Fig. 1!; therefore, we shall seek
complete solution to this problem and extend the result to
cases of three regions with corresponding boundary co
tions in the planesz50 andz5 l , and to the case of multi
pole origins. The solution will be found by analogy wit
solving the problem on a dipole above the conducting gro
@12–14#; in all three media we determine the Hertz vectorZW .
It enters by ordinary relationships with the scalar and vec
potentials,

w52
1

em
div ZW , AW 5

1

c

]ZW

]t
. ~A1!

Using the Lorentz condition and the expressions via
scalar and vector potentialsw andAW , we obtain the relation
betweenEW, HW , andZW . For example, in absorbing media w
have

EW~ j !5
1

e jm j
$grad~div ZW ~ j !!1kj

2ZW ~ j !%,

HW ~ j !5
ik0

m j
rot Z̃~ j ! ~A2!

where k05v/c is the wave number in vacuum,kj
2

5k0
2e jm j , j 51,2, and it is assumed thatZ;eivt. By similar

formulas one can find the field in the transparent gap, wh
k25k0

2em.
The Maxwell equations in absorbing media and in the g

can be met if the Hertz vector is known for all three med
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In the case of a dipole origin, to find the Cartesian comp
nents of the Hertz vector in the gap and in the absorb
materials we need to solve the equations

DZW 1k2ZW 524pmpW d~rW !

and

DZW ~ j !1kj
2ZW ~ j !50, ~A3!

where d(rW) is the delta function,rW the observation point,
and j 51,2. Obviously, for the magnetic Hertz vector w
need to solve the same~A3! equations replacingm i pW to e imW ,
wheremW is the magnetic dipole.

In the case of multipole origins we need to solve the eq
tion

DZW 1k2ZW 524pmpW ~21!n
]nd~rW !

]s1¯]sn
~A4!

in the gap and the corresponding homogeneous equatio
absorbing half spaces.

Boundary conditions may be found as well in the classi
textbook @13#. If the point dipole with the momentp
5(0,0,pz) is oriented along thez axis, then the equations ar
satisfied givenZ5(0,0,Zz). For a horizontal orientation o
the dipole on thex or y axes, as shown in@13#, one needs to
assume, to avoid contradiction in the boundary conditio
that it is the vertical component of the Hertz vector that
induced, i.e.,ZW 5(Zx,0,Z̃z) and ZW 5(0,Zy,Z̃z). Physically,
this is related to the effects of media 1 and 2. In other wor
one more fieldZ̃ is created by the secondary sources in m
dia 1 and 2, which is the solution to the homogeneous eq
tions ~A3!. The latter have to be completed with the boun
ary conditions expressing equality between the tang
components of the diffraction field at the boundariesz50
and z5 l . For thez-oriented dipole, whenZW 5(0,0,Zz), we
have

Zz

m
5

Zz
~ j !

m j
;

1

«m

]Zx

]z
5

1

« jm j

]Zz
~ j !

]z
, ~A5!

for the x-oriented dipole, whenZ5(Zx,0,Z̃z)

Zx5Zx
~ j ! ;

1

m

]Zx

]z
5

1

m j

]Zx
~ j !

]z
;

Z̃z

m
5

Z̃z
~ j !

m j

1

«m
S ]Z̃z

]z
1

]Zx

]x
D 5

1

« jm j
S ]Z̃z

~ j !

]z
1

]Zx
~ j !

]x
D ~ j 51,2!.

~A6!

Identically to ~A6!, conditions at the boundaries are o
tained for they-oriented dipole.

APPENDIX B: EXPLICIT FORM
OF A GENERAL SOLUTION

Taking into account the form of Eq.~A4!, we seek the
general solution of an inhomogeneous equation as a sum
0-11
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partial solution and the general solution of a homogene
equation. Assume that in the gap between the absorbing
dia Zz5pzZv , Z̃z5px coswZ̃v , Z̃z5py sinwZ̃v , Zx5pxZh ,
Zy5pyZh , where

Zv5~21!nmZn
q1E

0

`

J0~lr !@G2 exp~2qz!

1G1 exp~qz!#d l,

Zh5~21!nmZn
q1E

0

`

J0~lr !O@F2 exp~2qz!

1F1 exp~qz!#dl,

Z̃v5E
0

`

J1~lr !@H2 exp~2qz!1H1 exp~qz!#dl,

~B1!

in absorbing materialsZz
( j )5pzZv

( j ) , Z̃z
( j )5px coswZ̃v

(j) , Z̃z
( j )

5py sinwZ̃v
(j) , Zx

( j )5pxZh
( j ) , Zy

( j )5pyZh
( j ) , where

Zv
~1!5E

0

`

J0~lr !G1 exp~q1z! dl,

Zh
~1!5E

0

`

J0~lr !F1 exp~q1z!dl,

Z̃v
~1!5E

0

`

J1~lr !H1 exp~q1z!dl,

Zv
~2!5E

0

`

J0~lr !G2 exp@2q2~z2 l !#dl,

Zh
~2!5E

0

`

J0~lr !F2 exp@2q2~z2 l !#dl,

Z̃v
~2!5E

0

`

J1~lr !H2 exp@2q2~z2 l !#dl, ~B2!

where q5Al22k2, qj5Al22kj
2, ( j 51,2). Herel is the

constant of separation in the homogeneous Helmholtz e
tion.

From the boundary conditions~A5! and~A6! we find the
system of equations to define the coefficientsG6 , F6 , H6

Gj , F j , H j , ( j 51,2):

G15a i@ml~21!nqn21 exp~2qh!1G11G2#,

G15
g1

b1
@ml~21!nqn21 exp~2qh!1G12G2#,

F15ml~21!nqn21 exp~2qh!1F11F2 ,

F15
a1

b1
@ml~21!nqn21 exp~2qh!1F12F2#,
02661
s
e-

a-

H15a1~H11H2!, ~B3!

H25a2@H1 exp~ql !1H2 exp~2ql !#,

G25a2@mlqn21 exp@2q~ l 2h!#1G1 exp~ql !

1G2 exp~2ql !#,

G25
g2

B2
@mlqn21 exp@2q~ l 2h!#1G2 exp~2ql !

2G1 exp~ql !#,

F25mlqn21 exp@2q~ l 2h!#1F1 exp~ql !1F2 exp~2ql !,

F25
a2

b2
$mlqn21 exp@2q~ l 2h!#1F2 exp~2ql !

2F1 exp~ql !%,

lF12q1H15g1$l@ml~21!nqn21 exp~2qh!1F11F2#

1q~H22H1!%,

lF21q2H25g2$l@mlqn21 exp„2q~ l 2h!…1F1 exp~ql !

1F2 exp~2ql !#1q@H2 exp~2ql !

2H1 exp~ql !#%,

where

b j5
qj

q
, g j5

kj
2

k2 5
« jm j

«m
5a j ã j , a j5

m j

m
,

ã j5
« j

«
~ j 51,2!. ~B4!

Thus, we have 12 equations in this system with 12 u
known coefficients.

For solving of this system it is convenient to separa
evenm52k and oddn52k11 (k50,1,...) parts of a solu-
tion. Finally, we have

G1
e5

2m1lqm21

D̃
Fcosh~ql2qh!1

b2

ã2

sinh~ql2qh!G ,

G1
052

2m1lq̇n21

D̃
Fsinh~ql2qh!1

b2

ã2

cosh~ql2qh!G ,

G2
e5

2m2lqm21

D̃
Fcosh~qh!1

b1

ã1

sinh~qh!G ,

G2
o5

2m2
llqn21

D̃
Fsinh~qh!1

b1

ã1

cosh~qh!G ,
0-12



a
ac
ed

ith

e

alf
an
ng

may

i-

al-

SPECTRAL PROPERTIES OF FLUCTUATING . . . PHYSICAL REVIEW E65 026610
F1
e5

2mlqm21

D Fcosh~ql2qh!1
b2

a2
sinh~ql2qh!G ,

~B5!

F1
o52

2mlqn21

D Fsinh~ql2qh!1
b2

a2
cosh~ql2qh!G ,

F2
e5

2mlgm21

D Fcosh~qh!1
b1

a1
sinh~qh!G ,

F2
o5

2mlqn21

D Fsinh~qh!1
b1

a1
cosh~qh!G ,

H1
eo5

a1l

qD̃
H F1

eoS 12g1

g1
D Fcosh~ql !1

b2

ã2

sinh~ql !G
2F2

eoS 12
g2

g2
D J ,

H2
eo5

a2l

qD̃
H F1

eoS 12g1

g1
D 2F2

eoS 12g2

g2
D Fcosh~ql !

1
b1

ã1

sinh~ql !G J ,

where

D5S b1

a1
1

b2

a2
D cosh~ql !1S 11

b1b2

a1a2
D sinh~ql !,

D̃5S b1

ã1
1

b2

ã2
D cosh~ql !1S 11

b1b2

ã1ã2
D sinh~ql !. ~B6!

APPENDIX C: CALCULATION OF ELECTROMAGNETIC
LOSSES

Using formulas for components of a field~A2! in the cy-
lindrical system of coordinates and obtained expr˙essions for
components of the Hertz vector we find losses in both h
spaces of different multipoles located in a plain gap in
cordance with~16!. For even and odd multipoles compos
of the pz component of a unit dipole we have

Q1z
ee52Re

ivupzu2

4e1um1u2 E0

`

l dl@q1uG1
eu2#, ~C1!

Q2z
ee52Re

ivupzu2

4e2um2u2 E0

`

l dl@q2uG2
eu2#. ~C2!

For even multipoles composed ofpx,y components,
02661
lf
-

Q1xy
ee 52Re

ivupx,yu2

8e1um1u2 E0

`

l dlF uF1
eu2q1*

~q1
22k1

2!

l2 1uH1
eu2q1

2F1
e* H1

e uq1u2

l
2F1

eH1
e*

q1
2

l G , ~C3!

Q2xy
ee 52Re

ivupx,yu2

8e2um2u2 E0

`

l dlF uF2
eu2q2*

~q2
22k2

2!

l2 1uH2
eu2q2

1F2
e* H2

e uq2u2

l
1F2

eH2
e*

q2
2

l G . ~C4!

For odd multipoles we have the above formulas, but w
corresponding odd coefficientsG1,2

o , F1,2
o , andH1,2

o .
For mixed even-odd (e* o) multipoles composed ofpz

component we have

Q1z
e* o52Re

ivupzu2

4e1um1u2 E0

`

l dl@q1G1
e* G1

o#, ~C5!

Q2z
e* o52Re

ivupzu2

4e2um2u2
•E

0

`

l dl@q2G2
e* G2

o#. ~C6!

For mixed even–odd (e* o) multipoles constituted bypx,y
components we obtain

Q1xy
e* o52Re

ivupx,yu2

8e1um1u2 E0

`

l dlFF1
e* F1

oq1*
~q1

22k1
2!

l2

1H1
e* H1

oq12F1
e* H1

o uq1u2

l
2H1

e* F1
o

q1
2

l G , ~C7!

Q2xy
e* o52Re

ivupx,yu2

8e2um2u2 E0

`

l dlFF2
e* F2

oq2*
~q2

22k2
2!

l2

1H2
e* H2

oq21F2
e* H2

o uq2u2

l
1H2

e* F2
o

q2
2

l G . ~C8!

For mixed even–odd (eo* ) multipoles we have the sam

formulas with complex conjugated coefficientsG1,2
e G1,2

o* ,

F1,2
e F1,2

o* , H1,2
e H1,2

o* , andF1,2
e H1,2

o* .
Thus, we found the electromagnetic losses in two h

spaces originating from point multipoles of any order. As
important limiting case it is clear to obtain correspondi
losses of a multipole situated over a half space.

It should be emphasized that we found the losses that
be used for different practical cases. WhenpW 5 lW/iv is the
unit dipole, wherelW the unit dimensionless vector, the d
mensionality of this dipole is@p#5s rad21 and the dimen-
sionality of the losses corresponding to this dipole is@Q#
5s cm23 in accordance with the requirement of the gener
ized Kirchhoff’s law, see@6#, or the Eq.~11!. However, if we
use an ‘‘ordinary’’ dipole with the dimensionality@p#
0-13
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5g1/2cm5/2s21 we have ordinary losses with the dimensio
ality @Q#5erg s21. The same, obviously, is applicable
multipole losses. As follows from~21!, in order to obtain the
ordinary losses@Q#5erg s21, say, from the quadrupole com
posed of thepz dipole

Q1
z5 lim

uDzu→0
~pzDz!, ~C9!

we must simply substitute the value of this quadrupole i
~C1!, ~C2! instead ofpz etc., for any multipole.

From the above it follows the way to obtain relevant fo
mulas for the important case, when a multipole is situate
some distance over a half space.

APPENDIX D: CALCULATED COEFFICIENTS FOR
SPECTRAL CHARACTERISTICS

The calculation discussed in this paper gave the follow
coefficients for the even derivatives of thex,ycomponents of
the electric field:
02661
o

at

g

Cm
e 5uqmu2

Ucosh~ql2qh!1
b2

a2
sinh~ql2qh!U2

uDu2
,

C̃m
e 5uqmu2

Usinh~ql2qh!1
b2

ã2

cosh~ql2qh!U2

uD̃u2
,

~D1!

Dm
e 5uqmu2

Ucosh~qh!1
b1

a1
sinh~qh!U2

uDu2
,

D̃m
e 5uqmu2

Usinh~qh!1
b1

ã1

cosh~qh!U2

uD̃u2
, m52k,

k50,1, . . . .

For the odd derivatives of thex,y components we have
coefficients
Cn
o5uqnu2

Usinh~ql2qh!1
b2

a2
cosh~ql2qh!U2

uDu2
,

C̃n
o5uqnu2

Ucosh~ql2qh!1
b2

ã2

sinh~ql2qh!U2

uD̃u2
,

~D2!

Dn
o5uqnu2

Usinh~qh!1
b1

a1
cosh~qh!U2

uDu2
,

D̃n
o5uqnu2

Ucosh~qh!1
b1

ã1

sinh~qh!U2

uD̃u2
, n52k11, k50,1, . . . .

For mixed odd-even derivatives (o* e) of the z components of a field we obtain

Amn
o* e52qmq* n

Fcosh~ql2qh!1
b2

ã2

sinh~ql2qh!GF sinh~q* l 2q* h!1
b2*

ã2*
cosh~q* l 2q* h!G

uD̃u2

Bmn
o* e5qmq* n

Fcosh~qh!1
b1

ã1

sinh~qh!GF sinh~q* h!1
b1*

ã1*
cosh~q* h!G

uD̃u2
. ~D3!

For mixed odd-even derivatives (o* e) of the x,y components of a field we obtain
0-14
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Cmn
o* e5qmq* n

Fcosh~ql2qh!1
b2

a2

sinh~ql2qh!GF sinh~q* l 2q* h!1
b2*

a2*
cosh~q* l 2q* h!G

uDu2
,

C̃mn
o* e5qmq* n

Fsinh~ql2qh!1
b2

ã2

cosh~ql2qh!GF cosh~q* l 2q* h!1
b2*

ã2*
sinh~q* l 2q* h!G

uD̃u2
.

Dmn
o* e5qmq* n

Fcosh~qh!1
b1

a1

sinh~qh!GF sinh~q* h!1
b1*

a1*
cosh~q* h!G

uDu2
,

D̃mn
o* e5qmq* n

Fsinh~qh!1
b1

ã1
cosh~qh!GFcosh~q* h!1

b1*

ã1*
sinh~q* h!G

uD̃u2
. ~D4!
y
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